[image:]

ICDL Digital Student
Robotics
Syllabus 1.0

[image:]

Learning Material - SAMPLE
(micro:bit)

[bookmark: _heading=h.gjdgxs]Provided by:
«Name»
ICDL Digital Student
Robotics
Syllabus 1.0

Copyright ICDL Foundation 2022. All rights reserved. Reproducing, repurposing, or distributing this courseware without the permission of ICDL Foundation is prohibited.

ICDL Foundation, ICDL Europe, ICDL, ECDL and related logos are registered business names and/or trademarks of ECDL Foundation.
This courseware may be used to assist candidates to prepare for the ICDL Foundation Certification Programme as titled on the courseware. ICDL Foundation does not warrant that the use of this courseware publication will ensure passing of the tests for that ICDL Foundation Certification Programme.

Any and all assessment items and/or performance-based exercises contained in this courseware relate solely to this publication and do not constitute or imply certification by ICDL Foundation in respect of the ICDL Foundation Certification Programme or any other ICDL Foundation test. This material does not constitute certification and does not lead to certification through any other process than official ICDL Foundation certification testing.

The official courseware content is written in English. ICDL Foundation shall not be responsible for any errors or omissions contained in translated or other variations of this courseware.

In order to take the official test for the related ICDL Foundation Certification Programme, Candidates using this courseware must be registered with the National Operator. Without a valid registration, the test(s) cannot be undertaken and no certificate, nor any other form of recognition, can be given to a candidate. Registration can be undertaken at an Accredited Test Centre.

Tool and application-specific details are correct as of Sept 2022. Robot kit and the related applications are subject to frequent update and change

.

.

	
	

xvi	ICDL Robotics 1.0	©2022
© 2022	ICDL Robotics 1.0	Page 3

ICDL Robotics
Robots are an increasingly common feature of modern life. As well as being used in factories and workplaces, robots can now be seen on the streets or in our homes. ICD Robotics introduces the basic principles of robotics and covers the assembly, programming, and control of a simple robot.
When you have successfully finished this module, you will be able to:
· Understand key concepts relating to robots and robotics systems, and identify examples of robots.
· Identify the main parts of a robot and their function, including microcontrollers, actuators, sensors, and power sources.
· Understand the elements of a simple control system, and test a control system.
· Understand basic programming concepts, and create and execute a programme in a visual programming language.
· Set up a robot, implement robotic motion, and control a robot in an environment.

What are the benefits of this module?
The ICDL Robotics module has been developed to support students who want to learn more about building and programming robots. Once you have taken this module, you will have the skills and knowledge needed to explore the potential of robots further, creating and innovating with them.
You will also be able to certify in ICDL Robotics. To get certified, you need to pass a test and demonstrate certain skills in using a robot.

For details of the specific areas of the ICDL Robotics syllabus covered in each section of this book, refer to the ICDL Robotics syllabus map at the end of the book.
© 2022	ICDL Robotics 1.0	xvi

	

ICDL ROBOTICS

Lesson 1 - Robotic Concepts	1
LESSON 2 - ROBOTIC PARTS AND COMPONENTS	11
LESSON 3 - AN INTRODUCTION TO VISUAL PROGRAMMING	21
LESSON 4 - LOCOMOTION AND THE ACTUATOR SYSTEM	39
Lesson 5 - The Simple Control System	53
Lesson 6 - Testing a Simple Control System	71
LESSON 7 - PROGRAM CREATION	89
Lesson 8 - Program Elements and Controls	105
Lesson 9 - Logic Operators	121
Lesson 10 - Assembling a Robot	135
LESSON 11 - IMPLEMENTING ROBOTIC MOTION	141
Lesson 12 - Implementing Robotic Controls	159
Lesson 13 - Automating a Robot I	175
LESSON 14 - AUTOMATING A ROBOT II	203
LESSON 15 - ROBOTIC CONTROL IN AN ENVIRONMENT	219
Lesson 16 - Ethics in the use of Robots	233

Page xvi 	ICDL Robotics 1.0		© 2022
© 2022	ICDL Robotics 1.0	Page xvii

[bookmark: _Toc117065164]LESSON 7 -
PROGRAM CREATION
After completing this lesson, you should be able to:

· Recognise typical activities in program creation
· Understand the basic elements of a program
· Use an Events block in a program like: when.
· Understand how a flowchart can be used to present the steps in a solution

[image:] Scenario
In a simple game, we want to ‘move’ an LED through a simple route on the micro:bit’s LED display. From the red-circled position to the green-circled position.[image: Graphical user interface

Description automatically generated with medium confidence]

Working on this 2-dimenional stage, what are the steps needed so that the LED moves to the centre of the display and then ‘moves’ to the centre of the bottom row on the display.

[image:] Concepts

The following are some typical activities that can guide us in program creation:
[image: Graphical user interface, application

Description automatically generated]

Analyse a Task
We will come across different problems when we are trying to get a robot to carry out a task. Before we write a program to solve these problems and achieve a given task, we need to think carefully about it. Because we are applying action to the movement of the LED. we can call this a Sprite. A Sprite is an object, usually in a game, that are visual objects that are controlled and interact in the game. In some coding languages you can create your own sprites, Such as Scratch.
We do not need that level of complexity with microcontroller, so on the micro:bit a single LED illuminated represents a sprite.
Despite this limitation, how we use code to control the position of the sprite using a micro:bit is similar to other programming languages.
In the given scenario, the task is to have the LED sprite:
· start at the top left-hand corner of the display
· move to the middle of the micro:bit display
· lower itself to the bottom of the micro:bit display.
The task given in this scenario can be completed entirely in the Makecode application. Before we create a program to control the LED sprite, we will need to ask a few questions:
· What is the position of the starting point, the middle of the top row of the display, and the middle of the top row of the display?
· How can we instruct the LED Sprite to move to the final endpoint?
· How can we instruct the LED Sprite to ‘move’ smoothly?
These questions help us to think about the problems present. We can then consider the resources available to us and seek out possible solutions. This process is known as Analysis of a Task.

[image: Chart, scatter chart

Description automatically generated]
To Identify the position of a Sprite, we use co-ordinate systems.

A basic coordinate grid has two axes, an x-axis that runs horizontally ,and a y-axis which runs vertically. Each axis is divided into equal parts. Where they intersect is the coordinate value The X value is first. The starting point or origin is on the bottom left.
However, the micro:bit coordinate system is slightly different. It only has a coordinate grid of 5 x 5 , giving 25 different positions. The Axes are numbered 0 - 4 and the origin (0,0) starts in the top left corner.[image: Application

Description automatically generated with medium confidence]

[image: A picture containing light

Description automatically generated] Concepts
Design a solution

Identify the three coordinates that we can use to place the LED Sprite as stated by our problem. We now need to design a solution.

a. Position a LED sprite at X: 0 , Y: 0 (0,0) to start
b. Move the LED sprite to X: 2 , Y: 0 (2,0)
c. Move the LED sprite to X: 2 , Y: 4 (2,4)

[image:] Steps
We can present these instructions in order graphically by using a flow chart.[image: Diagram

Description automatically generated]

A flowchart makes use of common shapes as symbols for the instructions and connecting the related steps with lines.
Some common symbols include:
· Start or Stop
The algorithm starts at the Start box and runs until it reaches a Stop box.[image: Shape, rectangle

Description automatically generated]

· [image: Shape, rectangle

Description automatically generated]Process
These boxes contain simple instructions

[image: A picture containing light

Description automatically generated] Concepts
Write a program
With a simple solution in mind we can create a very simple program that ‘moves’ the sprite around the display. Moving from the top left, to top middle to bottom middle. Just by changing the coordinates.
[image: A picture containing text, weapon

Description automatically generated] Steps
1. [image: Graphical user interface, application

Description automatically generated]Create new project in Makecode. Name your project Lesson 7 coordinates.
2. To find out the co-ordinate value of any position on the LED Display, in makecode, hover your mouse over an LED to give you it’s co-ordinate value.

[image: A picture containing application

Description automatically generated]
3. Drag a forever block (an example of an event command), into the makecode code building area. From the LED command list drag a plot x .. y block and place inside the forever block. Check the micro:bit simulator that the correct LED is illuminated.

4. The values for x and y do not need to be changed here as this is our sprite’s starting point. Next we need to add a short time delay before we plot the next position, otherwise the LED will all seemingly appear at the same time. From the Basic command list drag a pause command and change the value to 500ms. From the LED command list drag and drop the another plot x…y block and change the value to the next position we want the LED to appear which is (2,0). Again, Check the microbit simulator that the correct LEDs are illuminated.[image: Graphical user interface, text, application

Description automatically generated]

5. Add another pause 500ms block and a plot x .. y with the final co-ordinates which will be (2,4). Finally add another pause block and from the Basic command list a clear screen command. Your final code should look like this.[image: Graphical user interface, text, application, chat or text message

Description automatically generated]

[image:] Concepts
Test and Improve the Program
When the program is ready, we test it by running the event specified in the program. In the micro:bit simulator you should see the LEDs illuminating in sequence.
Download the code to your micro:bit and see how the program works on the micro:bit.
You will notice that the LEDs stay illuminated once their position has been plotted.

[image: A picture containing graphical user interface

Description automatically generated]A way to improve this program would be if the display only showed a single LED Sprite moving around the display.

[image: Diagram

Description automatically generated]If we revisit the original design solution flowchart and see where we can make improvements.

To improve the program we want the LED sprite to appear, then appear to move to the next position. To do this we need to plot the LED Sprite position, wait for a short time and then unplot the LED sprite position, before plotting the Sprite’s next position.
So we can change our design, so our flowchart looks like this.

6. [image: Graphical user interface, application

Description automatically generated][image: Diagram

Description automatically generated]This program illuminates the LEDs at the correct co-ordinates. But we can improve the program so that it gives a better animated performance and looks as though the sprite is ‘moving’
To do this we need to turn the LED off after a period of time once it has been plotted. The LED command list has an unplot x…y command block. Drag this block into your program and place after each pause command, with the value of the previous plot command. Your program should look like this.

In the micro:bit simulator you will see the LED now appearing to ‘move’. OPTIONAL - Download you program to the micro:bit to see how it looks on the micro:controller.

[image:] Concepts
Using different event commands to execute different instructions
We have learnt that we can change the position of an LED sprite on a micro:bit display by changing its co-ordinates , also called manipulating the X and Y variables of the co-ordinates.
In the our first program we used the simple event command Forever which means the code will run until the microcontroller is turned off or restarted.
This project uses the information from the previous project and what we learnt about the gyroscope sensor and movement of the micro:bit in the X and Y axis. in Lesson 6. So when we move the micro:bit the LED sprite moves in that direction.
Create a new project in Makecode. Name your project Lesson 7 coordinates tilt . We are going to use what we learnt in the previous lesson about the gyroscope.
First we need to understand how we can move LED sprite around the display.
1. Drag an on start event block from the Basic command list to the code building area. The on start command is an example of an event block. This means that the commands inside the block will only be excited once the event has happened. In this case the event is when the micro:bit starts up.

2. [image: Graphical user interface

Description automatically generated] Next create two variables called x and y . Drag from the variable command list the a set x to and drag another and change to set y to. Both values need to remain at 0 as the starting coordinate for the sprite will be (0,0). You would change this if you wanted the starting point to be elsewhere on the display.

[image: Graphical user interface, text, application

Description automatically generated]
3. From the Basic command list drag a show LEDs block and place it in the on start block. Click on the block to create a pathway and obstacle for the sprite to follow and avoid.
Next from the LED command block list drag a plot x… y command block , then drag the x and y variables to replace the corresponding zeroes.
Your code should look like this, and the LED at co-ordinate (0,0) in the micro:bit simulator should be illuminated.

4. We now need to create a way to change the x and y values so that the sprite will move left and right and up and down. We will use the gyroscope sensor the achieve this.

5. We will use another event block , which will execute the code inside it based on the type and direction of movement on the micro:bit

6. [image: Graphical user interface

Description automatically generated]First let’s make the sprite move left and right. From the Input command list drag into the code building area the event block on shake. Click the little white arrow to get further options.

7. Select tilt right . Next drag into this block a change X by block from the Variables command list. This will change the value of the X co-ordinate every time we tilt the micro:bit to the right.

8. [image: Graphical user interface, application

Description automatically generated]We now need to plot the new co-ordinate value for the LED sprite. Drag a plot x…y command from the LED command list and drag the variables X and Y into this block. To make the animation run smoothly, we need to unplot the previous co-ordinate value. To do this drag an unplot x…y block into your code. From the Math command drag a calculation command into the x coordinate space. Drag the X variable into this block and change the calculation to - (minus) and the value to 1. This will unplot the previous coordinate. Giving the impression that the LED sprite is moving. This block of code should look like this.

9. Repeat the above section, but do the opposite. So choose tilt Left in the Event block. We need to change the value of x by -1 and we need to unplot x to x+1 .

10. Moving your mouse left and right over the micro:bit simulator will allow you to see your code working. You can also download it to your micro:bit to test further.

11. Now we can control the movement in the X axis .i.e. left and right. We need to be able to control the movement in the Y axis i.e. up and down.

12. We will repeat the above steps. With some changes.
From the Input command list drag into the code building area an event command on shake command. Click the little white arrow to get further options.

13. This time select Logo Up. Next from the drag into this block a change Y by block from the Variables command list. This will change the value of the Y co-ordinate every time we tilt the micro:bit upwards.

14. We now need to plot the new co-ordinate value for the LED sprite. Drag a plot x…y command from the LED command list and drag the variables X and Y into this block. To make the animation run smoothly, we need to unplot the previous co-ordinate value. To do this drag a unplot x…y block into your code. From the Math command drag a calculation command into the Y coordinate space. Drag the Y variable into this block and change the calculation to - (minus) and the value to 1. This will unplot the previous co-ordinate.
[image: Graphical user interface, application

Description automatically generated]

This is exactly what we did previously, but this time we are manipulating the Y variable.
15. Repeat the above section, but do the opposite. So choose Logo down we need to change the value of y by -1 and we need to unplot y to y+1 .

16. Moving your mouse up and down over the micro:bit simulator will allow you to see your code working. You can also download it to your micro:bit to test further.

17. We can control the movement in the X axis .i.e. left and right, and in the Y axis i.e. up and down. By tilting the micro:bit in different directions. The LED sprite will follow the movements.
Finally drag an on button….pressed block from the Input command. Change it to A+B and copy the code from the on start block this will allow you to reset your display by pressing the A and B buttons together. Your final code should look like this.

[image: A picture containing text, monitor, different, several

Description automatically generated]Download your code to your micro:bit to try it out.

	

Practice the Concept:
1. Create a flowchart for the previous program. How will it show that the code has multiple start points?
2. Can you use other event blocks from the INPUT commands list in your program to control the sprite? Do they all work? Can you redesign your program?

REVIEW EXERCISE
1. List in order the typical activities in program creation:

	1.
	

	2.
	

	3.
	

	4.
	

2. Which one of the following is not a way to analyse a task?
a. Asking questions.
b. Seek out available resources.
c. Seek out possible solutions.
d. Writing Instructions.

3. Which one of the following is used to present a solution graphically?
a. A program.
b. Flowchart.
c. Questions.
d. Instructions.

4. Match the following symbols used in a flowchart to their names given in the table:

	a
	

	b
	

	c
	

	Start or Stop
	

	Process
	

	Connecting line
	

5. Give an example of a control that can be added to a program so that we can observe clearly the different motions of a Sprite as they are carried out in sequence.

__ .

image1.png
[icoL;

The Digital Skills Standard

icdl.org

image2.png

image3.png

image4.png

image5.png
Analyse = Designa Write a Test,
a task solution program | improve

B o = | &

image6.png

image7.png

image8.png

image9.png

image10.png
GO

PlotX:0Y:0

!

PlotX:2Y:0

!

PlotX:2Y:4

=)

image11.png

image12.png

image13.png
7P

image14.png

image15.png
ne - @ @

image16.png
ne - @ @

500 v

@@

image17.png
ne - @ @

500 v

o @ @

500 v

)

500 v

image18.png

image19.png
ne - @ @

500 v

500 v

500 v

wrtot x @) y @

image20.png
PlotX:0Y: 0
Pause 500ms

Unplot X: 0 Y: 0

PlotX: 2Y: 0
Pause 500ms

Unplot X: 2 Y: 0

PlotX:2Y:4
Pause 500ms
UnplotX:2Y:4

image21.png

image22.png

image23.png
shake logoup logodown screen up

screendown fitleft free fall

image24.png

image25.png

image26.png
change x v by (@)

plotx xv y yv

un,,mx D, CE

change x v by o

Plotx xv y yv

show leds

change y + vy @)

plotx xv y yv

change y v by °

Plotx xv y yv

plotx xv y yv

unplot x x v y

image27.png
)/J

A

B

Qﬁ

.

image28.png
)/J

A

B

Qﬁ

.

