
ISSN: 2050 -1277 (online) 2050 -1269 (print)

Ideas, particularly good ideas, can take a long time to gain traction. Take the

notion of Computational Thinking (CT), a term first coined by the late Seymour

Papert. Papert was pointing to the potential of new technology to facilitate chil-

dren’s ability to solve problems and thus ‘construct’ knowledge and understand-

ing. But it took many years for the term to enter more mainstream use. For that

we can thank Jeannette Wing. In a short paper (goo.gl/uRP3AI) written in 2006,

the professor, then at Carnegie Mellon University argued that “Computational

thinking is a fundamental skill for everyone, not just for computer scientists. To

reading, writing, and arithmetic, we should add computational thinking to every

child’s analytical ability. Just as the printing press facili-

tated the spread of the three Rs, what is appropriately

incestuous about this vision is that computing and

computers facilitate the spread of computational think-

ing.” She pointed out that “Thinking like a computer

scientist means more than being able to program a

computer”, going on to stress that “This kind of thinking

will be part of the skill set of not only other scientists

but of everyone else. Ubiquitous computing is to today

as computational thinking is to tomorrow. Ubiquitous

computing was yesterday’s dream that became today’s

reality; computational thinking is tomorrow’s reality.”

Too many people still see CT as something for the technically

minded. CAS takes a different view. CT has a generic value

for developing ways of thinking in all children. The benefits

are applicable to many areas, not just Computing — one

reason CAS lobbied for a curriculum entitlement across all

key stages. This issue focuses on inclusion; on making

Computing accessible to every child, not just a select few.

The “Computing At School” group (CAS) is a membership association in partnership with BCS, The Chartered Institute for

IT and supported by Microsoft, Google and others. It aims to support and promote the teaching of Computing in UK schools.

p2-5

CAS NI goes from

strength to strength,

awards for CAS

Scotland, our 200th

hub and a major new CPD project.

p6-14

A major feature with

many contributions

from colleagues at

the forefront of chal-

lenging inequality and developing

an inclusive curriculum. Practical

ideas and articles featuring the

pioneering work of CAS #include.

p15-19

Mark Thornber contin-

ues his Mathematical

Musings, Dave White

presents a new course

exploring the pedagogy of CT and a

new free book from Peter Millican

using illustrative computer models

in Turtle System.

p20-23

Greg Michaelson consid-

ers some benefits of the

GOTO command, John

Stout looks at what com-

puters can and can’t do and Paul Revell

sings the praises of a book explaining

the inner workings of a processor.

Jeannette
Wing

http://goo.gl/uRP3AI

John Woollard, co-ordinator of the CAS Tenderfoot

project, and teaching fellow at the University of

Southampton outlines the objectives of an exciting

new initiative aimed at secondary school teachers.

Each Unit typically involves around

10 activities which can form the

basis of separate shorter CPD ses-

sions. These will be introduced over

the coming year. Others will follow.

 A Conceptual Approach To

Programming is probably the

most familiar territory. Split into two

separate sessions, the first has an

emphasis on laying firm founda-

tions. The second considers intro-

ducing data structures.

 Clever Stuff For Common Prob-

lems - Going beyond simple al-

gorithms builds on an apprecia-

tion of data structures to introduce

some real world algorithms.

 Bits and Bytes - The digital ad-

vantage looks at the representa-

tion of different data.

 Theoretical Computer - Fun

with finite state machines con-

siders models of computation and

Turing Machines.

 Bits AND Chips - The simple

ideas that make computers tick

explores Boolean logic and ma-

chine architecture.

 Simulating Our World - Adven-

tures in agent based modelling

gives practical ideas about

‘computational abstractions’.

Others planned are Doing Stuff

and Doing It Well (the search for

clever algorithms), Thinking Ma-

chines (the quest for artificial

intelligence), Communication Ba-

sics (the clever ideas that made

the internet) and Clicks and Mortar

(making sense of the way the web

works). Watch the video about the

Tenderfoot project at goo.gl/glyhQk.

CAS Regional Centres are starting to

draw together the activities of CAS

curriculum champions such as Hub

Leaders and Master Teachers. At the

heart of this work is our belief that

face to face discussion, sharing ideas

and support are key to developing

local communities of practice. Over

the coming years we hope many sec-

ondary teachers will benefit from the

Google funded CAS Tenderfoot pro-

ject. It provides high quality, subject

deep and resource rich CPD for these

curriculum champions exemplifying

Computer Science at Key Stage 3.

Each fast-paced, full day unit aims to

introduce potential trainers to a body

of theory (of broadly A-level standard)

and a range of ideas for introducing

these to less experienced colleagues

in their local CAS communities.

As such, the project is focused on

utilising the local CAS community in-

frastructure (Master Teachers, Univer-

sity academics and Hub Leaders in

particular) to develop secondary

school teachers who have little or no

background in Computer Science.

This is a long term project, the first

stage of which is to develop a network

of Tenderfoot Trainers who can offer

the one-day sessions to experienced

teachers in

their locali-

ty. The

resources supporting each day are

structured to allow those teachers to

then offer shorter sessions, ranging

from brief inputs at departmental or

CAS Hub meetings to half-day or twi-

light training sessions to help empow-

er teachers to continue to develop

their curriculum from Key Stage 3 up.

Each one day session gives access to

a range of materials including a com-

prehensive presentation, detailed

trainer’s notes, all related resources

for the classroom activities and sup-

porting teachers’ notes. That said, the

focus is on developing teachers, not

simply providing classroom resources.

Much of the subject matter will be un-

familiar and we hope to promote dis-

cussion and debate about how best to

introduce Computer Science concepts

to pupils as well as provide teacher

friendly exemplars.

The materials draw on many existing

resources, including those shared by

teachers on the CAS community re-

sources. In each session these are

developed around a narrative that

seeks to illustrate the centrality of core

concepts in computational thinking

such as algorithms, abstraction, de-

composition, generalisation and eval-

uation. All materials are available un-

der a Creative Commons license to

encourage further development and

sharing in line with the CAS ethos.

The project also promotes an under-

standing of the professional values of

research and its implications for con-

tinuing professional practice.

SWITCHEDON: www.computingatschool.org.uk 2

You can find more details of CAS Ten-

derfoot CPD events or becoming a

Master Teacher through your Regional

Centre: goo.gl/rtHUJL. If you’d like

further details about becoming a CAS

Tenderfoot trainer please contact

Tenderfoot@computingatschool.org.uk

http://goo.gl/glyhQk
http://goo.gl/rtHUJL
mailto:Tenderfoot@computingatschool.org.uk

We are fairly new to being a Hub

School and we wanted to ensure we

started well. At St Luke’s we tried to

cater for both Primary and Secondary

colleagues from across the city. We

had excellent links with our feeder

primaries through a community PE

project, so making contact was easy.

We’re also in a convenient place with

great transport links, so reaching our

school was straight-forward.

We tried really hard over the past two

years to ensure our scheme of work

reflected changes to curriculum and

also Ofsted requirements. We had to

ensure we had a well-rounded curricu-

lum that incorporated some primary

work for students who hadn’t been

taught Computing before. I felt it was

important to share with our Primary

colleagues what we do in Computing

when their students reach us. Having

a good transition between the two is

so important.

Our Hub meetings have been well-

attended. We had colleagues from St

Luke’s attend out of interest, plus both

local Primary and Secondary teach-

ers. Our local FE College also ex-

pressed an interest, which is great as

we only cater for 11-16, meaning that

the majority of our students go on to

FE College in the city. I also tried real-

ly hard to rope in (encourage!) col-

leagues from further afield. Devon is

so spread out that often a school can

be relatively isolated, particularly more

rural ones. This created excellent

working partners and many friends.

We are close to The Met Office and

they were brilliant, helping us with

both resources and speakers. We now

have a lovely relationship with them.

They have spoken and attended all

our Hub meetings and they been in-

credibly generous with their help. We

have also had SWGfL (South West

Grid for Learning) in to speak, as well

as teachers from other schools. There

is no competition which is so refresh-

ing; everyone simply wants to share

good practice.

We have always provided good re-

freshments too! At the end of the

school day, I am very aware that peo-

ple are using their own time to come

and see us – making them feel wel-

come is very important. We did a raffle

last time. It encouraged people to stay

to the end and they were appreciative.

Local businesses have donated and a

bottle of wine seems very well re-

ceived! At the last meeting, I allowed

time for ‘networking’. I hate this

phrase and was mocked greatly by my

colleagues, but I feel it was one of the

most useful parts of the meeting. It

meant people walked around our love-

ly Theatre, talking to one another.

Many ‘followed’ each other on Twitter

and were delighted to meet in person!

I know it created many useful relation-

ships that are still ongoing and I love

the fact that we helped create that.

I love being a Hub Leader, knowing

we have broadened our knowledge,

but also helped others too. We all

have the same goal and it’s been bril-

liant to work alongside others who

share the same aim.

In the last few years CAS has

grown into a vibrant community

committed to developing Compu-

ting in schools. It is recognised

around the globe as a model for

curriculum development. The CAS

Hubs are the foundation of much

of this work.

Education is an ever changing

landscape these days. However,

one constant in that landscape are

the teachers: dedicated profes-

sionals committed to inspiring

their pupils and developing their

own understanding. Over the past

three years the number of Hubs

has grown significantly and our

200th Hub was launched last July

at Norlington Boy’s School in Wal-

tham Forest, London.

The new Hub Leader, Demetrios

Skamiotis commented, “We are

very excited about the launch. It

will provide vital face to face sup-

port for teachers – giving them a

relaxed, informal place to meet

and share ideas, resources, re-

ceive training and get up to date

information, advice and support.

Our meetings will be run by teach-

ers - for teachers. We are plan-

ning a lively programme of activi-

ties and look forward to welcom-

ing local teachers to the group.”

If there isn’t a Hub near you, why

not follow the lead shown by

Demitrios and Laura (left)?

3 SWITCHEDON: www.computingatschool.org.uk

CAS Hubs are the lifeblood of our community. Last

term Laura Pearce, then Head of Computing at St-

Luke’s Science and Sports College in Exeter,

reflected on what it meant to host a CAS Hub.

Simon Humphreys , CAS National Co-ordinator, speaking at the launch of the Waltham Forest Hub

For the second year running we held a

research stream at the CAS Teacher Con-

ference in Birmingham. Three sessions

were led by teachers on the Teaching In-

quiry in Computing Education (TICE) pro-

ject. A booklet of their work is available at

goo.gl/0DzHYM - please do take a look if

you haven’t seen it. The CAS TICE project

was a pilot investigating how to support

teachers setting up action research pro-

jects in Computing. The underlying motiva-

tion was a belief that teachers carrying out

their investigations in school would value

support from

academics in the

design and

analysis of their

study. The

investigations

support their

professional

development,

have an impact

on teaching and

highlight further

research areas.

Funding for the

project was pro-

vided by Google.

Over 20 teachers and 7 academics have

been voluntarily involved since October

2015. The focus of the first meeting was to

introduce the basics of designing a re-

search intervention, and to establish and

focus on specific research questions. A

second meeting, last March was designed

to find out how to analyse data gathered

and how to write this up.

We were keen to provide teachers with

easy ways of sharing and disseminating

their research projects, however small, and

have created a template “poster”, used to

create posters, presentation and a team

booklet summarising the research. This

will be fed back to the teachers’ schools,

who have released them to participate in

the project. Those of us who helped on the

project were incredibly impressed by the

enthusiasm and energy of the teachers

engaging in this project, despite their lack

of time to work on their research during the

normal school week. Sue Sentance

An innovative CPD curriculum project recently won a

prestigious award from ScotlandIS, the trade body for the

digital technologies industry. Chair of

CAS Scotland Kate Farrell reports.

Professional Learning and Networking in Compu-

ting (PLAN C) is a Scottish Government funded

project that has developed and delivered high quality professional learn-

ing to Scottish Computing Science schoolteachers. The project won the

Best Education Provider / Training Programme, Digital Technology

Award. The aim of PLAN C was to support all CS teachers to deliver

new enhanced qualifications as part of Curriculum for Excellence. “PLAN

C has revolutionised the provision of continuous professional develop-

ment for Computing teachers” said Professor Alan Bundy, from the Uni-

versity of Edinburgh. “It has used the latest, evidence-based pedagogy

to empower teachers to provide the kind of Computing education that

the world needs in the 21st century. It combines the teaching of pro-

gramming with the ability to think computationally to increase students’

problem solving abilities.”

PLAN C focused primarily

on the development of

computational thinking

skills required for creating

and understanding solu-

tions in programming,

web, and database lan-

guages, since it is these

skills that are typically so

hard to foster. Traditional

computing teaching often

introduces problem solv-

ing too early, leading to

cognitive overload, which leaves no room for any real learning. Compu-

tational systems, such as programming languages, are normally intro-

duced by example, with novices trying to write programs before they’ve

learned how to read the language. One ‘lead’ teacher commented, "It is

simply not good enough to assume that programming is hard, program-

ming cannot be taught and some pupils simply cannot program. PLAN C

confirmed what I had always believed: if the content is presented in

ways that are accessible, then all pupils can achieve."

PLAN C instead focuses on helping novices to learn how to talk about

key concepts and develop clear mental models. We developed a series

of approaches to teaching, using research findings in a way that is rela-

tively easy to adopt in the classroom. We trained a network of 50 'lead'

teachers from secondary schools all over Scotland. We supported them

to create 25 local teacher hubs spanning the country. At least 350 of the

650 secondary CS teachers in Scotland have been involved in the pro-

gramme. PLAN C independent evaluator Laurie O’Donnell said, “The

quality of the professional conversations I have witnessed has been of

an exceptional standard as teachers grapple with the challenge of apply-

ing research on CS specific pedagogy in their classrooms.”

SWITCHEDON: www.computingatschool.org.uk 4

http://goo.gl/0DzHYM

The number of delegates attending

the conference has nearly tripled in

the two years since the inaugural CAS

Conference, showing the momentum

that has gathered. A wonderful, posi-

tive atmosphere prevailed throughout

the entire day. LEGO Education

brought the child out in all of us and

set the scene at the keynote session

with a little bit of computational think-

ing through the 'duck challenge'.

Delegates were treated to choosing

from fourteen different workshops with

something for everyone. We had

drones being controlled through iPads

in one room while Stephen Howell

introduced us to the 'Internet of every-

thing' in another. Code club sessions

were offered for those who were start-

ing the computing journey while more

experienced educators enjoyed work-

shops provided by C Shark targeting

A-level teachers.

This year schools presented poster

sessions at registration and morning

coffee demonstrating and encouraging

colleagues on what can be done. It

was great to see this new initiative.

One teacher commented "I bumped

into a friend with whom I had graduat-

ed 31 years earlier but had lost con-

tact and there we were at a computing

conference sharing ideas for our clas-

ses". Another teacher followed up on

the conference the following week

with an email indicating that she had

taken 3 ideas from the conference and

would be using them during the next

academic year.

The CAS Conference continues to

offer a rare networking opportunity for

educators and stakeholders in Com-

puting education in Northern Ireland.

The workshops annually present re-

freshing ideas for teachers to incorpo-

rate into their own teaching. The CAS

name and the annual Conference are

now firmly established within Compu-

ting education in Northern Ireland. We

look forward with optimism to future

CAS conferences in Northern Ireland,

which we hope will continue to grow

and expand.

St. Cecilia’s College Derry have

introduced the new Software Sys-

tems Development course in Year

13 to a select group of pupils who

have shown interest in program-

ming at A-level with the possibility

of studying Software Engineering

or similar courses at university.

Prior to this introduction there

were few choices in Computing

courses offered to post-16 pupils.

It has also helped facilitate the

introduction of the new CCEA Dig-

ital Technology course at GCSE.

This course was designed by IT

industry giants in collaboration

with CCEA. Teachers are provid-

ed with excellent opportunities to

learn C# with weekly tutorials de-

livered by lecturers at University of

Ulster, Magee prior to teaching

and an intense week provided by

AllState NI and their trainers at the

end of June. Along with this a

weekly mentoring program was

established between AllState NI

and the teachers who took on the

teaching role, thus building and

cementing good relationships be-

tween the industry and schools.

5 SWITCHEDON: www.computingatschool.org.uk

The 3rd CAS Teacher Conference for Northern Ireland was a sell

out with over 130 people attending. Co-organiser and leader of

CAS NI Irene Bell reflects on another stimulating day and the ev-

er growing CAS community in Northern Ireland.

Last term10 schools from the Greater Belfast Area were

selected to compete in a web-based challenge, sponsored

by W5 and Allstate, in Strathern School. The theme,

“Creating a Blue Society” focused on the sustainability of

the ocean. Prior to the event each team was to build their

own website and were encouraged to introduce more ad-

vanced elements. Teams then attempted to recreate the

website they had been developing to demonstrate their

newly acquired programming skills on the day.

Prizes were awarded based on a range of criteria. The

Wellington College team of Harvey Duffin, Aaron Burke,

Joshua Barret and Paddy Boyle and Mr Lyttle won the

“Allstate Young Software Engineers Team Award for 2016

for Key Stage 3”. Harvey Duffin was also singled out for a

special award for his excellent video/image production for

the website.

The judges commented that the Wellington College web-

site was outstanding and more of an A level standard than

KS3. They were most impressed with the overall profes-

sional design, the high quality photos/video assets and the

mobile friendly features of the website. A fortnight later the

same team won the Beltec Gaming Competition sponsored

by Kainos with an action game coded in Python.

What a difference two years

makes! At times the move

forward has felt frustratingly

slow but as I look around our

classrooms now, I can’t be-

lieve how far we have come.

Last term we reached a land-

mark - the ancient resource server held

together by string and hope was turned

off! Our resources are cloud based and

readily available to review, edit and share

regardless of device, platform or browser.

The yellow, tattered and often AWOL read-

ing records have become redundant for

most of our students. Initial teething prob-

lems have been overcome quickly and

pupils are far more engaged in their read-

ing. Older pupils are also recording their

ideas and thoughts about a book, not just

the page number they got to.

We continue to build pupils programming

skills. Phil Bagge’s fantastic resources

(code-it.co.uk) have enabled the older

pupils to accelerate their understanding of

Scratch, using it to program a robotic arm.

Even better - I’m not leading this. Having

greater confidence in the technology has

enabled staff with a healthy interest in it to

become far more proactive.

I am in awe of some staff and in the fan-

tastic position of going to them for advice.

Recently Year 5 pupils enjoyed video con-

ferencing (via Google hangout) with our

Chair of Governors who was unable to

come into school to be interviewed. The

headteacher and I watched in delight

whilst the children took in all in their stride

as if it were a daily occurrence - no doubt

for them it will be. The Chromebooks are

an overwhelming success - next is to in-

vest time into developing our other devices

to the same high standard. Year 1 have

made significant use of the small number

of iPads we have. To broaden our chil-

dren’s digital experience we are also be-

ginning to look at Android tablets as well

as non-Google laptops. This was always

part of the plan, to ensure pupils did not

become device specific learners, but had a

deeper understanding of the possibilities

offered through technology.

Phil Bagge, a Hampshire Advisory Teacher

spotlights the potential impact the ‘hidden

curriculum’ can have in shaping the outlook

of primary school pupils.

Approximately 96% of the algorithms and programming that govern our

digital devices are written by men. I wonder how our modern digital

world would look and feel if women had a more equal say in designing

and creating it? So how can we create a solid foundation in primary edu-

cation that leaves all pupils excited about computing? We need to stop

solving things for pupils and we need to stop them solving things for

each other. If one pupil solves something and shares the solution with

their neighbours then only the original problem solver develops their

thinking skills. The helper is not really helping, in fact they are making

the helped more helpless and less independent. Hints rather than solu-

tions help someone to help themselves. Removing the false help of a

fully formed solution forces pupils to think for themselves and develop

their own thinking skills. Our quieter less confident pupils of both sexes

flourish when the tyranny of false help is removed.

I lead lots of computing inset in schools across England and in nearly

every school, before I start, teachers come up and tell me, often with a

certain level of challenge, that they are rubbish at using technology.

When team teaching and working in schools I hear teachers tell their

pupils that they don’t get a certain technology or do a certain aspect of

computing. We need to remove the acceptableness of teachers being

openly helpless at computing in the classroom. Admitting to colleagues

that you struggle in an area or need support to move forward is to be

encouraged as it can be the beginning of change. If we are negative

about the value of the knowledge or say that it is not something we do

then our pupils will be negative about it and fail to see its value either.

Why could teacher helplessness be such an important issue in maintain-

ing gender imbalance? I see no evidence to suggest there are more

male or female ‘helpless’ teachers. Let’s say 5% of both male and fe-

male teachers are helpless. In primary education over 75% of teachers

and classroom support assistants are female. So our nominal 5% repre-

sents a much higher number of female teachers. All research suggests

that positive role models are important in encouraging children to believe

that something lies within their domain and computing is no different.

Children are complex and whilst there are no ‘boys’ or ‘girls’ program-

ming projects, some pupils of both sexes will enjoy game creation, some

connect with the beauty of Maths inside programming, others literacy,

music or design and technology. By linking programming to a wide varie-

ty of stimuli we demonstrate how it is important for all of us. I have yet to

meet a teacher that didn’t want their students to achieve more than their

own generation was able to achieve, to push the boundaries and remove

ceilings. I am confident that when, like me, primary teachers realise how

our practice needs to change we will rise to that challenge.

SWITCHEDON: www.computingatschool.org.uk 6

This is an abbreviated version of an article that first appeared on Phil’s

website: code-it.co.uk. You can read the full piece at goo.gl/NUV8z8

http://code-it.co.uk
http://goo.gl/NUV8z8

My grandfather was a coal miner.

Both of my parents left school by six-

teen. I went to a comprehensive

school in the Midlands and went on to

read Mathematics at Cambridge. In

part at least this achievement was

thanks to Dave Pidcock, the Head of

Maths at my school, who brought in

his Sharp MZ-80k (anybody remem-

ber?) so a few of us could spend

lunchtimes learning to program.

These are such exciting times. We’re

the first country in the world to have

Computer Science as a curriculum

entitlement for all, from age five up.

Given the role software plays in all of

our lives, it’s about time children are

learning to write programs as well as

use them: even better, that they’re

learning about the fundamental princi-

ples of computation and the process-

es of computational thinking, as well

as the craft skills of coding.

Getting Computing on to the National

Curriculum though isn’t enough.

We’ve got to make it happen in

schools, and it’s probably too early to

tell how good we are at that. There

are some great success stories al-

ready, and I think we’ve certainly hit

the ground running… but I hear sto-

ries of primary schools where the fo-

cus is excessively on Maths and Eng-

lish at the expense of all the other

subjects, of secondary schools without

a computing specialist attempting to

teach our highly ambitious KS3 curric-

ulum in just two or three half term

blocks, and of schools not offering any

GCSE CS because they don’t have

the staff or, and I quote, “it’s too hard

for our students”. As I used to put on

far too many school reports: ‘has

made good progress, although room

for improvement remains.’

The picture is a patchy one, but I’m

worried about where the patches are. I

I suspect it’s not the grammar schools,

academies in nice middle class areas

or primary schools in south Farnham

that are effectively opting out of

providing proper computing. I think it’s

the challenging schools, where an

entitlement to Computing would make

the most difference, where it has the

least chance to do so. I encourage my

trainees to ask hard questions like

‘where is the evidence for that?’ So

where is my evidence for this? I’ve

little evidence there’s less provision

for Computing in challenging schools,

but my colleague, and fellow CAS

member, Pete Kemp is on the case

and hopes to report shortly. Getting

Computing on the curriculum has

helped. It really has. Getting Compu-

ting taught well, by great teachers

able to pass on a passion for the sub-

ject, in all schools, helps even more.

Anyone seen The Imitation

Game? Who knows who built Co-

lossus, the computer they used to

crack the Lorenz cipher at Bletch-

ley Park? ….

Tommy Flowers.

Tommy Flowers

was a working

class lad, the

son of a brick

layer, learning

engineering

through evening

classes and an

apprenticeship.

We rightly celebrate the achieve-

ments of Alan Turing, but I hope

not at the expense of working

class heroes such as Flowers. We

have very little knowledge about

social mobility within the compu-

ting industry. It’s a question few

businesses ask or report on yet

we need role models from all

backgrounds. You see, that’s the

thing. In Computing, your back-

ground doesn’t, or at least,

shouldn’t, really matter. What

matters is how good you are at

coding, creativity and the at-

tendant problem solving. An en-

tirely meritocratic pathway into

making a difference and earning a

decent salary. What matters now

is that youngsters who could be-

come the computer scientists of

the future are aware of the possi-

bilities, and get the right encour-

agement if it’s a path they choose.

7 SWITCHEDON: www.computingatschool.org.uk

Not just a subject for schools in the leafy suburbs.

Miles Berry, senior lecturer at The University of

Roehampton makes a passionate case to develop

strong Computing teaching across all schools.

You don’t get to Carnegie Hall just by going to class recorder lessons; school PE isn’t enough for an Olympic medal.

Julian Sefton-Green’s recent report, Mapping Learner Progression into Digital Creativity (goo.gl/13wmae) makes it clear

that those who pursue careers in software or digital arts have done plenty outside school. As well as Computing in

school, we need Computing after school and in the holidays too. Code Club, Coder Dojo and Young

Rewired State are a great start, but let’s make sure the uptake fairly reflects the

diversity of backgrounds so the gaps get narrow not wider! These initiatives

and less formal mentoring need volunteers, able to share their knowledge

and pass on some of their enthusiasm. CAS is a community that has brought

together teachers, academics and industry experts. Here’s an area where the

energy of industry specialists could potentially contribute so much. Maybe you

could play a part in changing someone’s life chances?

Tommy
Flowers

http://goo.gl/13wmae

As well as those who have a different

home language but speak English well, we

also have quite a number of students that

are new to English. They arrive with little

more than “yes”, “no” and “no English / no

understand.” Fortunately, in Computing we

have many resources to help.

I have often started with Scratch or Kodu. I

know Scratch well enough that I don’t need

to read the blocks and you can change the

language. Students love that they can do

something in their home language as it

takes the strain off for a lesson. When they

start to speak a little English the basic lan-

guage used in such systems actually

seems to help – “when the bat touches the

cat, the cat die.”

There are other difficulties. I once taught a

Year 10 student from Bangladesh who had

never touched a computer before and was

physically shaking with nerves. Translation

isn’t always available and doesn’t always

help. Sometimes they don’t know the word

in their own language (especially subject

specific vocabulary) or are illiterate in their

own language.

Early English learners do appreciate the

efforts and I am always amazed by how

quickly some of them learn and progress.

No-one can doubt the very real and multiple barriers to learning that can exist in

some areas with high levels of deprivation. But that is no reason to think strategies

cannot be developed to try to address them, argues Paul Powell, who teaches at

George Mitchell, a CAS Lead School in Leyton, East London.

When I was asked to write something about inclusion from a socioeco-

nomic and diversity perspective I was initially a little stumped. My imme-

diate thought was “I don’t do anything differently” and perhaps this is the

first and most fundamental point. I have found interest from boys and

girls from a wide range of backgrounds and I see and share a love of the

subject with them. I challenge them, help them and believe in them. I’m

sure this is no different to thousands of colleagues up and down the

country, but this does not detract from its importance.

My school is in the East End of London and is well into the top quintile

for EAL and FSM. The streets that surround us are in the top 10% for

deprivation in the country. Last but not least, our Progress 8 is signifi-

cantly above national average.

Earlier this year, in an ICT mock exam, quite a number of students

missed a question because they didn’t know what the word ‘efficient’

meant. Many of our students guess the meaning of a word from the

class context or find a way not to answer to cover that they don’t know.

Suddenly it is there in an exam question and you discover that there is a

gaping hole in their comprehension and you missed it. At that point all

you can do is explain it is an exam and you can’t help them.

Every lesson needs me to think about developing language. Even with

Year 11 I get them to sound out words, repeat back new and sometimes

basic terminology. It might seem childish, but I make a fool of myself

while doing it and they seem to forgive me. When it came to the next

exam they did better. Language is empowering.

Socioeconomic conditions provide another challenge. Access to comput-

ers outside of school can be a difficult and basic skills are not always

there. This year about 20% of our Year 7 knew how to save a file. That

lack of exposure to technology means we need to take a few steps back-

wards to start to go forwards. When we key into where they are, it be-

comes easier and they start to move forward. By the time they are in

Year 11 I am sure they will perform at or above national average. I don’t

have many answers or magic strategies, just a determination to find

what works.

SWITCHEDON: www.computingatschool.org.uk 8

Culturally Situated Design Tools (csdt.rpi.edu)

is a website with activities to introduce Maths

and Computing concepts through cultural as-

pects of predominantly African, African Ameri-

can, Latino and Native American people. The

work of Ron Eglash, from Rensselaer Poly-

technic Institute, NY, it offers a variety of class-

room tools, ranging from simulations to soft-

ware through which students can investigate

concepts such as transformational geometry,

patterns and algorithms. Explorations of, for

example, Native American rug weaving, Afro

American cornrow braids and Latin American

pyramid structures provide a historical and

cultural context for computational thinking ac-

tivities. Well worth exploring. Roger Davies

http://csdt.rpi.edu/

The two days were lead by Peter

Kemp. Peter has created previous

Computing wikibooks, including our

KS3 one in 2015. A Senior Lecturer in

Computing Education at Roehampton

University, he is particularly interested

in social mobility and has been re-

searching the subject. We had a wide

range of specialists involved, ranging

from University lecturers to network

engineers, creating high quality con-

tent that is now freely accessible.

When teaching Computing for the first

time, being less secure, teachers fre-

quently buy textbooks to boost their

knowledge. A wikibook could do the

same job. More importantly, many

students can’t afford additional texts

to support their studies. With budget

cuts, schools don’t necessarily have

the budgets to stock the vital support-

ing texts in their own libraries. Many

resources available online are not

tailored for study at this level. The

consequences of this are quite sim-

ple. Students from socio-economically

disadvantaged backgrounds do less

well at Computing, and we believe the

lack of good quality free supporting

resources is a contributing factor. Just

how much of a contributing factor it is

remains to be seen. Peter’s research

using the national pupil database from

the last five years will hopefully be

available soon.

We know the books are already help-

ing and some schools are even using

the A level book as their primary

teaching text. We are also aware of

academics from all over the world

linking to specific sections of the book

to provide support material for their

teaching. Most importantly, we see

thousands of students using the col-

laborative section of the A-level book

to discuss and share ideas on the

AQA pre-release material for the on-

screen programming examination.

With this kind of usage in mind, one

day in the not so distant future we

hope to publish the books in a physi-

cal format, allowing school libraries to

cheaply offer the supporting material.

This will benefit students with poor

access to their online format, due to

lack of internet access or suitable de-

vices to read it on.

We asked our amazing volunteers

(above) why they gave up their

weekend and travelled to Birming-

ham to write our A-level wikibook.

Duncan Maidens who teaches

networking at Birmingham City

University and provided the venue

told us that “With many years

teaching networking, the wiki

book project is a great way to

use my knowledge and demysti-

fy the area for A-level students.

Knowing this will be available for

free maximizes the impact of my

effort and makes the whole idea

really worth doing.” Computer

Science teacher Melanie, who has

previously contributed to our KS3

wikibook spoke of her “enthusiasm

for open platforms and an appreci-

ation of the mission of CAS

#include” as the motivation to

travel all the way from Devon to

take part.

A further wikibook hack weekend

was held at King's College London

on July 16th. Thirteen authors

attended including teachers, aca-

demics and industry professionals

Luckily, with the work we have

already done, you don’t have to

give up a weekend to contribute

and help #include make Computer

Science available to all regardless

of their background. The wiki-

books are live and we welcome

contributions, no matter how large

or small. Visit goo.gl/poaWvv. You

may even get to see your work in

print one day.

9 SWITCHEDON: www.computingatschool.org.uk

CAS #include were busy hacking the curriculum

again in March, when they crowdsourced anoth-

er wikibook, this time for A-level Computing.

Emma-Ashley Liles reports on a great weekend.

http://goo.gl/poaWvv

SWITCHEDON asked Katharine Childs,

East Midlands Code Club Co-ordinator

to share some of her insights working

with autistic pupils in Primary schools.

Autism is a lifelong, developmental con-

dition that affects the way people expe-

rience the world around them and com-

municate with others. However, the

autistic spectrum is not a measurable scale of being

“a bit” or “a lot” autistic – it’s a rainbow of nuances.

If this sounds ambiguous, remember that we hu-

mans are complex and unique individuals, and in

the same way, autism can affect people in different

ways on different days.

In general, when I’ve worked with autistic children in

mainstream Primary schools, I’ve seen that their

lack of assumptions and their literal understanding

of the world around them can be helpful when learn-

ing to write code. Conversely, autistic children often

find it difficult to abstract detail and model a solution

because they want to create everything exactly as it

is in real life.

Of course, the goal when learning to code is to be

creative and solve problems. So when we set Key

Stage 2 homework to make an artefact or item to do

with Ancient Greece, I was delighted when a girl on

the autistic spectrum wrote a Minotaur’s Maze game

in Scratch. For this girl, coding was a platform to

express her ideas, just as writing words or drawing

pictures can be for other children.

Learning to code brings out other skills too. One of

my favourite teaching moments was when a boy

who has autism became the class expert and was in

demand to help others. The effect that this had on

his communication skills and subsequently on his

self-esteem was powerful.

Autistic children

grow up to be

autistic adults,

and with only

15% of adults on

the spectrum in

full-time employ-

ment, coding,

creating and digi-

tal making comprise an obvious career path to con-

sider. How much do you know about autism? Take

this quiz written in Scratch to test your knowledge:

goo.gl/jaEcvf. The questions are taken from the Na-

tional Autistic Society's (goo.gl/yVqJjC) pack for

schools and are especially suitable for Key Stage 2.

Hannah Mills, who is a teacher at

Marshfields, a community special

school in Peterborough, suggests

one way to engage dyslexic students.

You are not alone. Having spoken to many teachers, a lot of us

share ‘the fear’ of teaching text-based programming to students

with dyslexia. How do we teach them? What activities will allow

them to access a language we assume they won’t be able to

read or use, given that they struggle so much with every day

English? I recently took the plunge and dived in with a class

containing two dyslexic students (amongst other needs, as I

teach in a SEND school). To my relief it was a great success!

I think the key thing I found was using a medium

that they were familiar with and could get on

board with from the very beginning… so what

did I use? Minecraft Raspberry Pi Edition and

Python! My first discovery (this one is probably

unsurprising) was that students are more likely

to plug away at something until they get it right if

it is something they are interested in. I found that those who

weren’t that familiar with Minecraft were just as engaged as

those heading towards being a pro, because who doesn’t like to

play games in their lessons?

We started, as a class, first breaking the code down into each

line. Then as we progressed through activities, we gradually put

the code used in the last activity together into blocks. This ena-

bled all students, including those who are dyslexic, to make

progress towards being able to read and organise longer se-

quences of code. Talking to the students revealed that they

found it easier to type in the code accurately, because they

weren’t looking at ‘normal’ words and phrasing; it was just a

case of following the line of code carefully when typing it in. The

students were also able to debug programs, whether this was a

line of code in the wrong place or a typo (deliberate of course!)

in a particular line.

Overall feedback was that they enjoyed being able to see the

immediate results of their programs in the Minecraft world and

that they preferred this activity to block-based programming.

They felt it helped them grow in confidence; that actually, not all

literacy activities were an uphill, insurmountable struggle. There

were some very sad faces when the scheme of work ended. So

take the plunge: every Raspberry Pi comes with Minecraft and

Python and (with some extra work) you can use much the same

code from Python on Windows (see goo.gl/Z2nv0h) and Macs.

So jump in and don’t let ‘the fear’ stop you!

SWITCHEDON: www.computingatschool.org.uk 10

https://goo.gl/jaEcvf
http://goo.gl/yVqJjC
http://goo.gl/Z2nv0h
http://d3bgui9r1m2641.cloudfront.net/wp-content/uploads/2012/12/cropped-Pi-Edition-header1.jpg

In my English group I have a number

of very reluctant writers. I’m always

trying to find ways to get them to put

pen to paper or finger to keyboard.

Last term we studied ‘The Hitchhiker’s

Guide to the Galaxy’ by Douglas Ad-

ams, and as we went through the

book I let them play on the excellent

BBC text game (goo.gl/moG9Cr) that

Douglas Adams wrote based on his

original radio play.

My students loved the game and one

child asked if they could create their

own. After some searching and trying

out some sites such as Twine

(twinery.org) I came across Quest

from Textadventures (goo.gl/IQrhzn)

and their sister site ActiveLit

(activelit.com). I chose to use ActiveLIt

as it allowed me to set individual

logins for my students within a walled

gardened site for my school.

As an introduction I showed the stu-

dents one of the games on the site

and got them to have a go so that they

could see what sort of games they

could create. I then got them to plan in

their books the game they wanted to

create. At first I restricted them to only

detailing one character and to design-

ing just three interconnecting areas;

this gave them a focus and meant that

they would produce a higher level of

detail. I got them to label all the en-

trances and exits to and from the are-

as; what objects were to be in each

room and how their character was to

interact with those objects.

From this, they logged into ActiveLit

and started creating their worlds. Ac-

tiveLit can run in two modes; we used

the simplified version which restricts

some of the functionality and also min-

imises the amount of coding that was

required (it was an English lesson

after all!). Students created their char-

acters, rooms and objects as they had

planned, and added interactions via a

simple menu-based scripting wizard.

They were also able to add sounds

and images to enhance their stories. I

then asked the group members to play

each other’s games and to provide

some constructive feedback relating to

the plans that had been drawn up.

After incorporating the feedback, I let

the students expand their games.

Examples of two of the games created

can be found at bit.ly/1XbVC00 and

bit.ly/1UDddHZ (shown). My students

enjoyed making the games and it has

been interesting to see where their

imaginations have taken them. It has

helped with their use of adjectives and

verbs as well as their planning of sto-

ries (and computer programs!).

The ever growing playlist on CAS

TV includes some excellent ad-

vice on various aspects of inclu-

sion. Carrie Anne Philbin, direc-

tor of education at the Raspber-

ry Pi Foundation, discusses

some of the issues around gen-

der, inclusion and Computing

whilst Dawn Akyürek and Gem-

ma Marsden of King's College

School, Madrid, outline some

strategies they’ve used to better

engage girls in Computing.

Catherine Elliott also expands on

the thinking behind the activities

she highlights in this issue of

SWITCHEDON, whilst discussing

Computing and SEN.

Rebecca Franks of The King-

swinford School discusses the

Pupil Premium and how it can

best be spent to raise the attain-

ment of disadvantaged children.

Rebecca advocates an ap-

proach that is focussed on quali-

ty-first teaching and the use of

SOLO (Structure of Observed

Learning Outcomes), which she

explains in the interview. She

also discusses other possible

uses of Pupil Premium funding,

such as provision of internet ac-

cess at home and to computers.

11 SWITCHEDON: www.computingatschool.org.uk

CAS Master Teacher Matthew Parry, from Stanwick

School and Sports College, Derbyshire, outlines an

activity combining simple scripting and literacy that

even his most reluctant writers have loved.

Keep up to date with all new con-

tent by clicking the subscribe but-

ton. CAS TV can be found at

youtube.com/computingatschool.

http://goo.gl/moG9Cr
http://twinery.org/
http://goo.gl/IQrhzn
http://activelit.com/
http://bit.ly/1XbVC00
http://bit.ly/1UDddHZ
http://youtube.com/computingatschool

A first step in algorithmic thinking is putting

things in order. There are lots of potential

links with literacy, in terms of retelling fa-

miliar stories. We can also support a range

of needs by using audio and visual sup-

port, or 3D objects – pupils can access the

task through different senses appropriate

to their needs.

Recordable buttons are familiar aids in

many schools. You could record key sen-

tences from a familiar story onto recorda-

ble buttons, postcards or switches. Stick

an appropriate image or symbol onto each

button, and ask pupils to put them into the

order they appear in the story. Similarly

you could read a familiar story or sing a

song, and ask pupils to put 3D objects or

toy characters in the order they appear.

Jeannette Wing’s seminal paper states that “Computational thinking is a fun-

damental skill for everyone, not just computer scientists.” Catherine Elliott,

SEN Lead for Sheffield City Council’s e-Learning Team shares some practical

advice on developing these skills with pupils working at the upper P scales.

Using music to teach about sequencing is engaging, and a good way of

investigating what happens when you change the order in an algorithm.

There are a wide range of recordable buttons available to help with this

activity. These allow you to record a short sound clip or section of

speech for a pupil to play back. Give each pupil an instrument or sound

clip on a recordable button to play. Print out photographs of each pupil

and place them in a pile – you may want more than one of each pupil. A

volunteer then chooses five cards from the pile and creates a sequence

with them on the board. Pupils play their instruments in order according

to the photos. Discuss what happens if you change the sequence; i.e.

the music will change.

The Minibeast Rhythms activity is a Scratch project. We’ve shared it at

goo.gl/yTTjEx and it can be used to create sequences of clapping

rhythms. Choose four minibeasts, and ask the class to clap out the

names, e.g. cat-er-pill-ar-bee-tle-snail-bee-tle in order. This activity can

be extended to start looking at loops: repeating n times, or repeating

until the teacher says stop. This is a great way of learning about sylla-

bles, and can be done with any number of cross-curricular topics, e.g.

transport, colours, shapes or dinosaurs!

SWITCHEDON: www.computingatschool.org.uk 12

Written in 2006, Jeannette Wing’s paper on Computational Thinking states; “To reading, writing, and arithmetic, we should

add computational thinking to every child’s analytical ability.” Computational Thinking is a hugely beneficial skill for the

majority of pupils, for example, improving the ability to apply solutions in a variety of contexts, to break down complex

problems and be able to order information sequentially. Although there are young people who have not reached a cogni-

tive level advanced enough to make sense of Computational Thinking beyond basic cause and effect, for those working at

the upper P scales and above, there are many positives to learning these problem-solving skills which can be applied

across the curriculum.

Many Computational Thinking activities can also contribute to the core priorities of these pupils, for example enhancing

communication, social skills, numeracy, literacy, life skills and motor skills. This ensures that lessons remain relevant and

meaningful for pupils who may never program a computer. Here are a number of simple, accessible activities to teach the

Computational Thinking skills of algorithmic thinking and logical reasoning. They are suitable for pupils with special educa-

tional needs and disabilities working on the upper P scales and above, but are equally relevant to mainstream KS1 pupils.

https://goo.gl/yTTjEx

Although pupils working at this level don’t need to know what a Bubble

Sort is, it is an intuitive way of sorting. It can be used with a variety of

objects to teach logical reasoning and algorithmic thinking. In a Bubble

Sort, objects or values are sorted (e.g. highest to lowest) by comparing

neighbouring objects and swapping position as required until the order is

correct. This is best done with each pupil holding a value card or object

and swapping places, to encourage movement and communication.

Here are some examples of what you could ask pupils to sort:

 Small amounts of money in coins – supporting numeracy and life skills

 Objects according to weight or size – science links

 Themselves, by height or birthday month

 Textured materials, roughest to smoothest

 Numbers e.g. the answers to simple sums, the amount of items on a

card; or perhaps use Top Trump cards (above) and choose a category.

All sorts of activities encourage pupils to move, which can help with co-

ordination and motor skills. Also, for many pupils with specific communi-

cation and learning difficulties, providing a physical context for an ab-

stract concept also assists with understanding .

You can create a whole class dance algorithm by

sequencing different moves, either using dance

cue-cards with images of moves on them (above),

or assigning each pupil a different move and then

choosing them in different sequences. Again,

there is the opportunity here to start to introduce

more complex ideas by adding repeat x times

cards into the algorithm.

Alternatively, create a floor algorithm using lami-

nated cards with symbols and arrows, as shown

right. Pupils can work in teams to create a route

around the classroom, and decide what move-

ment or task is indicated by different symbols.

They then need to explain the rules (the algorithm)

to another team. Carol Allen, SEN teacher and

consultant in the North East, demonstrated this

activity using Ikea placemats at the SEND Confer-

ence at the National STEM Centre last year.

These are just a few ideas for engaging

and including all pupils. For complete les-

son ideas see the Teaching SEN page at

Barefoot Computing (goo.gl/6cTuu3); you

will need to register for a free login. There

are a number of activities for pupils with

special educational needs looking at algo-

rithms, decomposition, pattern recognition,

plus some guidance for teachers. There is

also a collection of lesson ideas and useful

links on the SEN Computing Wiki at

goo.gl/am8tLg along with resources for

teaching the OCR Nationals entry-level

qualification in Computing.

It is worth visiting the SEN and Disability

pages on the CAS #include website

(goo.gl/CgTzpB) for more useful links and

details of upcoming events. This is also

the home of the Revised P Scales for

Computing; a document created by a

group of teachers and educators around

the country which contains a set of state-

ments better reflecting the content of the

Computing Programs of Study.

13 SWITCHEDON: www.computingatschool.org.uk

Make it relevant

Make it sensory

Make it fun

http://goo.gl/6cTuu3
http://goo.gl/am8tLg
http://goo.gl/CgTzpB
http://casinclude.org.uk/resources/revised-p-scales-for-computing/
http://casinclude.org.uk/resources/revised-p-scales-for-computing/

After lunch Donna Rawling and I ran a

wearables workshop. It was a great way to

wind down and chat. We had some Elec-

tro-Fashion kits from Kitronik as well as a

few example pieces already made up. We

brought along our collection of sparkly bits,

felt and foam flowers as well as needles

and extra thread. Our workshoppers

planned designs on paper and then sewed

them onto cotton bags. It took a fair bit of

planning to ensure that the traces didn’t

overlap, that positive never got too close to

negative, and that the battery holder was

in the ‘right’ place!

Wearables

always look

great but can

be a bit daunt-

ing at first.

Students often

need help with

simple sewing

skills, but as

long as they

can sew in a

reasonably

straight line it will be fine. Students of all

abilities and ages enjoy the satisfaction of

completing a simple sewn circuit; everyone

likes a flashing LED!

One of our workshoppers works with

young offenders and was convinced this

kind of activity would be thoroughly engag-

ing. It demands fairly close attention to

detail and a fair amount of planning but,

once you're past that stage, the sewing

begins and getting the LEDs lit is always

satisfying. The traces were covered up by

adding felt, and the LEDs were used to

illuminate flowers, a robot and a rather

fetching raspberry too! There was just

about time to complete the bags in the two

hours allotted. Everyone went away with

something to share with their students and

colleagues. Sue Gray

The #include Conference took place last

June. Alan Harrison, a BCS Scholar teaching

at Blessed Thomas Holford Catholic College

in Altrincham, reports on an inspiring day.

On the day, I discovered what dancing has to do with code, what 11-

year-old girls think of programming, and how iPad apps are engaging

and stretching the most challenging students. The CAS #include Diversi-

ty & Inclusion Conference 2016 was fun and enlightening in equal meas-

ure. Among the keynotes that made an impression was that of Katharine

Childs, containing valuable insights into autism. Did you know that boys

are more likely than girls to be diagnosed as being on the autism spec-

trum, by a factor of at least 5 to 1? This was followed by one of the day's

many firsts: a keynote speech from an 11-year-old, Carrie Anne Philbin's

‘protégée’ the wonderful Elise, aka @Girls2Geeks, with some great ide-

as on getting girls into programming and technology. Her answer to my

question, "Should we have girls-only code clubs?" was thoughtful and

mature, and in a word, "No".

The practical sessions were equally useful, and after coffee I decided to

find out from Edge Hill's Dawn Hewitson what a bee's waggle dance had

to do with code. As a result, I am now somewhat famous for teaching

"Dad Dancing" to a room full of kids and adults. You can see the whole

thing here: bit.ly/dancingcode. But what a lovely idea, making the con-

cepts of programming (sequence, iteration, subroutines) accessible to all

in a memorably kinaesthetic way!

I simply haven’t the space to do the rest of the conference justice, but

why not visit my Twitter account, @tech_magpie, for more, or watch

highlights on my Storify here: bit.ly/casinclude16. As a quick summary,

I'm grateful for insights from Emma-Ashley Liles of 7Digital and

@CASinclude, featuring the worrying statistic that less than 300 girls

took A-Level Computing last year, and why "hack a hairdryer" was NOT

the answer. I gained practical strategies for teaching a ‘Haribo bag’ of

SEND children from the contagiously enthusiastic Hannah Mills, aka

@Digitaldivageek, and had a fun session, with CAS Primary Master

Teacher Ruth Smith, trying out iPad apps that are great for engaging

challenging students. There was just enough time for me to offer my own

services to the next conference, share a last coffee and grab some swag

before braving the Manchester rain again. Well done all.

SWITCHEDON: www.computingatschool.org.uk 14

http://bit.ly/dancingcode
http://bit.ly/casinclude16

In August 2015 the Raspberry Pi

Foundation organised their first

Skycademy (see sidebar for more

details): three days of intense training

on how to construct a payload, how to

set up tracker boards and pick up sig-

nals on radio receivers; as well as

how to put together the payload ‘train’

of balloon, parachute and payload —

all joined together with cord. As one of

the first cohort of 24 Skycademy

‘cadets’, I was part of Team Stratus.

Post Skycademy, the first team, Glebe

House School, launched in October

2015, but weather and a few tracking

issues prevented our launch until later

in the year. On 8th May 2016 a small

group of students from Fakenham

Academy Norfolk (FAN) launched a

high-altitude balloon into near space.

Students Brandon, Chloe and Charlie

had been preparing for the launch for

months. They learned how to use a

radio receiver to ‘listen’ to the signals

sent from a payload made up of a

Raspberry Pi computer plus tracker

boards; they also learned a great deal

about the weather and weather pre-

dictions. Due to our location - about

ten miles from the North Norfolk coast

- a launch from the school site was not

possible. So the FAN group joined

others taking part in the Glob-

al Space Balloon Challenge (goo.gl/

uJe6NT) under the guidance of Steve

Randall from Random Engineering,

who supported Skycademy (goo.gl/

efhhqI) and arranged the launch from

his site at Elsworth in Cambridgeshire.

The students were all familiar with the

pre-launch preparations of putting the

payload together and preparing the

‘train’. They were confident handling

the equipment and calmly took care of

the tracking. The balloon launched at

10:53 and after just five minutes had

reached an altitude of 1681 metres;

after ten it was at 3282 metres. The

balloon burst at 12:13 when it had

reached an altitude of 26533 metres.

Sadly, at 12:18 the payload stopped

transmitting and the group had to rely

on a predicted landing location in or-

der to find it. After a search around the

predicted location the payload couldn’t

be found and the group had to return

home. The payload box was decorat-

ed with pink duct tape and had a re-

turn address label, should it be found.

Shortly after arriving home I received

a call from Steve Randall to say that

he had located the payload! A brilliant

end to the day.

Physical computing

gives a real purpose

to learning. It gives

rise to great pro-

ject-based experi-

ences, connect-

ing with other dis-

ciplines such as sci-

ence, design, engineering and the

arts. Two years ago I stumbled

across a project that ticked all the

boxes: to send a small electronic

device (called a tracker) on a heli-

um balloon into the upper atmos-

phere. During the flight it uses

GPS to track its position, and ra-

dio to transmit data back to earth.

As the balloon rises it expands

due to the thinning atmosphere.

Somewhere between 20 and

38km it bursts and descends back

to earth (under a parachute).

Throughout the flight an on-board

camera captures images. At

above 25km the curvature of the

earth is visible, allowing students

to view some amazing images.

Thankfully, some seasoned bal-

loonists have created some low-

cost hardware for this. The ‘Pi in

the Sky’ board adds this tracker

functionality to a Raspberry Pi.

Just over a year ago the Raspber-

ry Pi Foundation organised its first

CPD event for educators, to get

this experience into the hands of

students. Over the course of three

days our teams built, configured

and tested their payload devices,

and on the second day they

launched five flights across East

Anglia. More events were planned

for summer and we hope this is

just the start. More information at

goo.gl/1ZbZvh. James Robinson

15 SWITCHEDON: www.computingatschool.org.uk

Sue Gray, one of the original 24 Skycademy

cadets, reports on this fantastic initiative,

and the thrills experienced as a result, by

students at Fakenham Academy, Norfolk.

https://goo.gl/uJe6NT
https://goo.gl/uJe6NT
http://goo.gl/efhhqI
http://goo.gl/efhhqI
https://goo.gl/1ZbZvh

In this column I'd like to look at a simple idea that is now used in many different situations. It first came to Stan Ulam when

he was working on the atomic bomb project at Los Alamos. His idea was that you could use lots of random guesses to solve

a hard problem, and it was one of the early uses for the ENIAC computer. It came to be known as the Monte Carlo method

because it came to him while playing cards. We will use it to find the value of π. Of course, this is well known to many deci-

mal places (through the use of computers) but the Monte Carlo method provides one way of finding those digits. It should

work with groups familiar with Pythagoras's theorem and circles; usually Year 10 is OK.

A circle of radius 1 has an area π×12 = π. We can estimate this area as follows:

 Surround the circle with a square of side 2

 Generate lots of random points in the square

 Count how many are in the circle

The illustration, top left, shows the idea.

We should have

This gives

To make this work nicely I suggest using a circle centred at (0, 0).

You can get a random point in the square by generating two ran-

dom numbers x and y, both between -1 and 1. To check if the point

is inside the circle, use Pythagoras to see if the distance to (0, 0) is

less than 1 as shown in the diagram above. This means we need

for the point to be inside. Here’s a Python program:

The accuracy of the estimation of π will improve

if you use more points. This is when the power

of using a computer program becomes apparent

to students. Try generating a million or even

more points.

We can take the investigation further. Get your

students to add some code to time how long the

program takes to perform the calculations. You

can time most simple programs with the Python

time module. I found one million points took

about 1 second to complete on my machine.

import time # put at the start
startTime = time.clock()
code to be timed goes here
endTime = time.clock()
print(endTime - startTime)

A further extension might be to challenge the

students to predict and then investigate what

happens to the time if you generate ten times as

many points? What about 100 times as many?

Based on their findings, you can ask them to

consider whether it is sensible to generate a

trillion points.

Mark Thornber, who teaches at Durham Johnston Compre-

hensive School, continues his exploration of ways Compu-

ting can be used to enhance students’ understanding of

mathematical ideas.

SWITCHEDON: www.computingatschool.org.uk 16

import random
random.seed()
totalPoints = 10000
pointsInside = 0
for i in range(totalPoints):
 x = 2 * random.random() - 1
 y = 2 * random.random() - 1
 if x * x + y * y < 1:

 pointsInside += 1
piValue = 4 * pointsInside/totalPoints
print(piValue)

PyCon UK, the annual gathering of the UK Python communi-

ty., takes place in Cardiff from 15th to 19th September. Of particu-

lar interest to readers of SWITCHEDON is the teachers’ day, on

Friday 16th. Now in its fifth year, it gives you the chance to meet

with and learn from developers, and gives them the chance to

contribute to the development of resources for the class-

room. More details, including information about bursaries are

available are on the website: 2016.pyconuk.org. If you’re reading

this after the event, a full report will follow.

Note there's no need for

a square root. That just

slows the program!

http://2016.pyconuk.org

Project 1 is an example taken from the

problem domain Grids & Board

Games. This environment has the

advantage of requiring a relatively

small basic toolbox to explore it, and

produces the reward of a graphical

effect when a correct program is run –

an important encouragement to pupils.

Also this process can be undertaken

in any language that implements the

sprite/turtle. So what do ISPY and

Push-Python have to offer in addition?

ISPY is a push-button programming

technology that allows pupils to build

directly, one instruction at a time (with

a simultaneous action on the screen),

a graphical solution in the text-based

language UPL (unplugged program-

ming language) with minimal use of

the keyboard. UPL differs from Python

and Scratch by having instruction

movements recorded as ‘paces’ rather

than pixels. There is a simple mapping

to the corresponding instructions in

Scratch and Python. A benefit of push-

button technology is that pupils con-

centrate on the Computational Think-

ing to construct programs without hav-

ing to deal with difficulties beginners

otherwise face when trying to write

programs in a text-based language

(the cycle of syntax errors, message

reporting, editing and re-running). Fur-

ther, logical/drawing errors are usually

immediately apparent and remedied

with a push-button delete.

Push-Python is a push-button stand-

alone machine, offering a powerful

subset of Python 3, with button for-

mats, screen and program output

faithful to an implementation of the

turtle in Python 3. It follows on from

ISPY, has a much wider capability,

and again can be used to take pupils

through to constructing programs in

Python 3 (using the course projects)

with all the advantages of the push-

button technology described.

There are currently three ISPY

Toolboxes, which scaffold the pro-

gramming process. User-defined

instructions (functions) add in-

creased functionality to the

Toolbox, and subsequent

Toolboxes can be extended by

new pupil-defined push-button

instructions.

Missions of graded problems re-

lated to each project are an inte-

gral part of the operation of ISPY,

and pupils progress through the

problems learning Computational

Thinking and practising control

programming structures as they

go. Finally, ISPY generates the

pupil’s solution program, which

can be saved in a UPL and/or

Python version.

17 SWITCHEDON: www.computingatschool.org.uk

Dave White, a CAS Master Teacher, presents an

introductory course exploring the pedagogy of

Computational Thinking and programming in

Python for teachers at KS2/3.

The full Course: ‘Tao of Computa-

tional Thinking in Programming’

supported by Google International

Awards CS4HS 2015 and CS4HS

2016, will be delivered free to

teachers before each term this year

and is available for download from

ispython.com/tao. The ISPY and

Push-Python environments, devel-

oped through the CS4HS 2016

award, are also free to download

from ispython.com/ispy.

The ethos is to offer pupils who are beginners in text-based programming a

chance to explore cross-curricular topics using a project-based, problem solving

approach focusing on the Computational Thinking to create human solutions.

Most importantly, it aims to develop and transition to scaffolded program solu-

tions. We start with a Toolbox consisting of three basic motor instructions: for-

ward, left turn and right turn, that drive the familiar sprite/turtle of Scratch, Logo

and Python. Using the control structures: sequence, repetition and functions, we

develop the toolbox to tackle problems drawing and colouring geometric shapes.

It is well known that Computational Think-

ing is widely applicable, and that programs

can be used to illustrate and explore many

varied phenomena, especially in the sci-

ences. But most students find it very hard

to write such programs for themselves,

and even expert teachers typically lack the

time to develop more than one or two.

‘Computer Science Across the Curriculum’

– a book to be distributed free to second-

ary schools – addresses this problem, and

illustrates the implementation of computer

models in many different disciplines.

The first chapter explains how to get start-

ed with the Turtle System, and its basic

concepts, after which the second provides

a simple introduction (in BASIC, Pascal,

and Python) to animation, modelling of

motion, and user input by keyboard or

mouse. Then follow chapters on Physics,

Cellular Automata, Chemistry, Biology,

Mathematics (from chaos, recursion and

self-similarity to waves), Computer Sci-

ence (including game algorithms), and

Philosophy and the Social Sciences (e.g.

models of co-operation and segregation).

The material from the science chapters,

illustrated in this article, can easily be in-

corporated into lessons even without the

Turtle System, as most programs can run

direct from www.turtle.ox.ac.uk/csac.

Select one, and it will be loaded into Turtle

Online; then clicking 'RUN' will execute it in

your web browser.

The final chapters — on Philosophy and

Social Sciences — are less likely to be

relevant to conventional curricula, but are

designed to inspire students and teachers

to appreciate how computer-based meth-

ods open new and exciting possibilities for

these disciplines.

The Turtle System has recently been significantly developed at Oxford University

thanks to a project co-funded by the Department for Education. Peter Millican,

Professor at Hertford College and author of the system, has written a free book

and suite of programs illustrating the value of CS concepts to many subjects.

Physics provides some obvious topics for modelling. The simple graph-

ical interface of Turtle System, based on canvas x and y coordinates,

makes it very easy to model motion in two dimensions using a procedure

that moves the turtle repeatedly by the appropriate x and y velocities,

drawing an animated projectile as it goes. The automated cannon pro-

gram shown here (with smashed balls

littering the ground and one in flight),

gradually raises the cannon from 0°

towards 90°, building up graphs to

show how flight time and distance vary

with the initial angle. Students thus

gain a deeper, practical appreciation of

the relevant theory, from the trigono-

metric calculation of initial x and y ve-

locities, to the application of gravita-

tional acceleration to the y velocity.

Another more challenging program models firing a rocket into orbit, us-

ing real physical values and tracking the rocket’s position to the nearest

metre each second, as well as its velocity (and acceleration) to the near-

est millimetre per second (squared). With control over only the initial

thrust, time of thrust, and firing angle, it is surprisingly difficult to achieve

orbit, but students are encouraged to develop the program further, taking

account of other physical factors such as weight loss (as fuel is burned)

and the Earth’s rotational velocity. Again, there is scope for entertain-

ment, exploration, and substantial learning beyond the syllabus.

Cellular automata offer lots of interesting

possibilities, starting with a simple ver-

sion of a standard model of epidemics

(pictured) which can be used to illustrate

the value of inoculation. Then, a simple

implementation of the Game of Life –

just thirty lines long – aims to motivate

learning about binary numbers, Boolean

operators and encoding methods, using

hexadecimal numbers to store infor-

mation as coloured pixels.

Another program illustrates Wolfram's

theory of one-dimensional automata,

generating patterns that are strikingly

reminiscent of some found in natural

shells (such as Conux textile shown).

The chapter on Chemistry uses similar techniques to model diffusion of

liquids before moving on to explain and apply simple atomic theory,

starting from Brownian motion (which also gives an opportunity to illus-

SWITCHEDON: www.computingatschool.org.uk 18

http://www.turtle.ox.ac.uk/csac

Turtle System is based on Turtle Graphics, an idea invented by Seymour Papert. This sort of programming, and
the results it produces, are easy to understand because they are so immediately visual. But the Turtle System
discussed here shows that Papert‘s idea can go well beyond simple graphics, to provide a basis for fascinating
and powerful programs that can explore many cross-curricular concepts through a variety of computer models.

The most celebrated

icon of chaos is the

Mandelbrot set, and

this book explains

exactly what that is,

providing a simple

program that gener-

ates a picture of the

complete set (shown

right), as well as

allowing more de-

tailed ‘zooming in’ to regions within it. The

aim here is to give real understanding of the

relevant theory by providing genuine imple-

mentations – in simple computer language

– which can be examined, run and modified

by students themselves. Those who have

read about chaos, without ever learning

exactly what it is, will thus be enabled to dig

much deeper.

The chaos chapter of Computer Science

Across the Curriculum then moves through

discussion of the well-known Sierpinsky

triangle, which can be generated in several

ways, some of these involving iterated func-

tion systems similar in principle to the Man-

delbrot process. It is

fascinating to discov-

er how the simple

specification of iterat-

ed functions, by re-

setting a few parame-

ters, can generate –

from what is essen-

tially the very same

program – such dif-

ferent patterns as

Michael Barnsley’s

famous fern and the

dragon curve (below).

These patterns are

known as ‘fractals’,

displaying self-

similarity in the com-

plete pattern and

their sub-parts, so

that, like the Man-

delbrot set, in princi-

ple they have infinite

detail ‘all the way

down’.

19 SWITCHEDON: www.computingatschool.org.uk

This new book was developed in collaboration with CS4FN, the popu-

lar magazine (and website www.cs4fn.org) based at Queen Mary Uni-

versity of London. Most students (and even teachers) are likely to find it

hard to translate general ideas into precise algorithms, but these pro-

grams illustrate how to do so, and are sufficiently short to be relatively

easy to understand, modify and learn from. Topics connected with

CS4FN include animal behaviour (e.g. ant trails), animation, artificial

intelligence (e.g. playing Nim or Noughts and Crosses), cellular au-

tomata (e.g. Game of Life and morphogenesis), chaotic phenomena,

disease epidemics, evolutionary models, fractal art, graphics and im-

age encoding, logic, mechanics, Prisoner’s Dilemma, and searching.

trate more Physics, in the impact of particles). Again independent explo-

ration and interdisciplinary crossover are encouraged, for example by

inviting students to combine the diffusion and epidemic models to

demonstrate how mobility of infected individuals can radically alter the

dynamics of disease spread.

Biology also provides many other ex-

cellent examples, from the competitive

evolution of ever-faster cheetahs and

gazelles, to evolutionary fixing of the

sex ratio, to modelling of coordinated

movement such as trail-following in

ants or flocking of birds. Yet again

there is plenty of scope for students to

take these ideas further, with the nec-

essary programming techniques ex-

plained and illustrated to enable these

models to be developed through, for instance, the introduction of obsta-

cles, rival species, and predators.

Another biological model, of insect population,

based on the well-known logistic equation,

provides an excellent illustration of chaos, a

form of non-linear dynamics whose wide ap-

plicability to many different domains has come

to light precisely through the exploration of

computer models. For more on this fascinating

topic, see the sidebar.

Next comes a chapter on wave interference, including illustrations of

Fourier decomposition (using Hugh

Wallis’s impressive ‘wave superposer’

program) and a model of wave patterns

within Young’s two slit experiment

(shown). Though quite advanced, this

provides illustrative material for teach-

ers to supplement their classroom ex-

planations, and will help students who

may be reading books such as Richard

Feynman’s QED or Brian Cox and Jeff

Forshaw’s The Quantum Universe.

http://www.cs4fn.org/

If you only ever

read one book

that explains

how comput-

ers work,

then this

should be it.

The title

itself has a

story of its

own. It

was to

get be-

hind the

title that first

made me open the book. You

can enjoy discovering that for yourself, but

the general idea is to de-mystify the topic

of how computers work, something most of

us would really appreciate.

In the book, the inner workings of a com-

puter are explained in easy to understand

sections. The chapters are very short,

which allows the reader to concentrate on

absorbing a small section in one session.

Many of the chapters are only 2 or 3 pages

which makes it very readable. The format

also makes it easy to dip in and out of the

book, which is pretty much essential for

people in teaching jobs. The technical ter-

minology is limited. If your starting point is

that a computer has a processor to work

things out and some memory where the

data and instructions come from, then

you’ll be fine. What it is not is a manual to

explain the workings of an actual comput-

er. The explanations use a simple model

computer based on the ‘Scott CPU’ which

is developed, chapter by chapter, to help

understand the principles at work.

There must be hundreds of teachers in the

UK, leading classes through computer sci-

ence courses, who don’t have the ‘proper’

undergraduate background. This book can

provide all they need (and more) in terms

of computer architecture knowledge.

Paul Revell, Head of Computing at The

Lakes School, Cumbria, urges all teachers to

read a book by John Clark Scott and explore

the supporting resources available.

We can’t actually see electronics in action, so we need a mental model

and this book provides some excellent ‘mind pictures’ around which an

understanding can be built. In particular, many models lead us to an un-

derstanding of bits being ‘sent’ from one component to another and we

visualise ‘blobs’ of data moving along wires. Reading this book soon

turns this into a version of live (or not live) wires, allowing a better per-

ception of the speed at which things can happen inside a computer and

of their true nature. The wire is made live (or not live) many times per

second as opposed to something moving from A to B. It’s a bit like turn-

ing a light on: we visualise a cold dead wire that is then made live when

we flick the switch. It is a small change from the idea of a signal travel-

ling along a wire, but it is disproportionately useful.

Most people reading this will have had experience of teaching students

in their mid-teens about logic gates. Almost inevitably the questions

“Why do we have to do this?” or “What’s the point of this?” will be raised

— and, rightly so. If you are left with rather feeble answers, such as

“Well they are the basic building blocks of computers” or some equally

broad (or vague) response, then read this book; it will add to your own

understanding and will give you some easy-to-understand yet absolutely

fundamental contexts to pass on to students. It is easy enough to use

logic gate simulators to build some replicas of the book’s explanations.

One of the first things you can do, after reading the first few chapters, is

to build a one-bit register with students.

Reading the section about how gates can be joined together to manipu-

late bit patterns is the core of the book. The way that logical and arith-

metic operations are achieved via bit shifts, inversions and the use of

adders are all made clear. The answer to the original question (i.e. how

does a processor actually know what to do?) is explained by putting to-

gether the idea of a decoder and all the gate permutations that can ma-

nipulate bits. Essentially, the processor is wired up to perform all the

different operations but only the one specified by the decoded input ac-

tually ‘fires’. This is an excellent book that warrants careful reading.

SWITCHEDON: www.computingatschool.org.uk 20

Visit buthowdoitknow.com/ and you’ll soon

be on the trail to buy the book, watch videos

derived from it and read reviews. If you do,

expect your confidence levels and under-

standing to rocket. There is even an online

simulator of the processor (shown right),

and an Excel version, as described in the

book if you want to go a step further.

http://buthowdoitknow.com/

This book is concerned primarily with

what computers can do, but the last

chapter (see right) covers what they

can’t do easily or even at all. The first

chapter, What Are Algorithms and

Why Should You Care? does a great

job of answering these two questions,

introducing topics such as correctness

and resource usage (predominantly

time). Algorithm analysis starts to

make an appearance here by showing

how the world’s best programmer,

using assembly language on the fast-

est computer, gets beaten by a medio-

cre programmer using a high-level

language on a slow computer with a

better algorithm. You’ll need a bit of

mathematics for this and other chap-

ters, but it’s kept fairly simple. You can

always skip detail for the summaries.

How to Describe and Evaluate Com-

puter Algorithms introduces simple

searching algorithms on arrays and

has a nice clear description of big O,

theta (Θ) and omega (Ω): notations to

classify running times. There's a brief

introduction to recursion and it’s nice

to see a bit of proof (loop invariants)

for algorithm correctness here. Chap-

ter 3 extends linear searching to bina-

ry search (iterative and recursive) be-

fore moving to sorting. Each new algo-

rithm is analysed in more depth than

you'll probably ever need to teach, but

often brings out nuances that aren’t

immediately obvious. For example,

selection sort moves items Θ(n) times,

but insertion sort up to Θ(n2
) times, so

if the items are large or on slow stor-

age, the assumption that insertion is

better than selection doesn't always

apply! Merge sort is introduced as a

divide-and-conquer algorithm and

analysed in depth, as is Quicksort

which follows. A recap ties it all to-

gether. A Lower Bound for Sorting and

How to Beat It introduces Counting

and Radix sorts, ways in which we

can beat even Merge sort and Quick-

sort with certain types of input. Di-

rected Acyclic Graphs (DAG) introduc-

es topological sorting and different

ways of representing a DAG as an

adjacency matrix or list. Chinese

cooking is used to introduce PERT

charts, critical paths and finding the

shortest path in a DAG. Shortest

Paths explores Dijkstra’s algorithm.

The importance of data structures is

discussed and different implementa-

tions using arrays and binary heaps

compared. The Bellman-Ford algo-

rithm is a precursor leading to arbi-

trage opportunities, then the Floyd-

Warshall algorithm and its use in dy-

namic programming!

Algorithms on Strings introduces ap-

plications relevant to computational

biology. Algorithms include finding the

longest common subsequence of two

strings, transforming one string to an-

other as ‘cheaply’ as possible, and

finding occurrences of one string with-

in another. The last of these introduc-

es finite automata.

Foundations of Cryptography covers

substitution ciphers, one-time pads,

and block ciphers: all symmetric key

ciphers. By contrast public-key cryp-

tography, the idea underlying internet

security, uses different algorithms for

encrypting and decrypting; algorithm

analysis is essential here. Chapter 9,

Data Compression, starts with why we

want to compress data, why it’s possi-

ble to do it, and whether we can live

with lossy compression (MP3 and

JPG compression methods) or need

lossless compression (ZIP file com-

pression). The chapter considers Huff-

man codes (which use binary trees)

and finishes with Lempel-Ziv-Welch

(LZW) compression.

The last chapter introduces the

problem classes P, NP and NP-

complete as well as the P=NP

problem. P contains the problems

we can solve in O(n
c
) time (these

are tractable even if c is very

large); NP contains problems

where, given a proposed solution,

we can verify that it is a solution in

O(n
c
) time and NP-complete con-

tains the problems that are in NP

and are such that finding an algo-

rithm to solve one of these — in O

(n
c
) time — means that we can

solve all of the NP problems. Also

covered are some of the pairs of

problems that look very similar but

are in different classes, e.g., find-

ing shortest paths in a directed

graph is in P but finding the long-

est path is in NP!

P problems are in NP, but are NP

problems in P? This is the P=NP

problem. There’s a lot here that I

skipped reading, but there’s a

useful table of the different types

of problems, as well as a Perspec-

tive section which discusses in-

stances of problems that are easy

and their approximate solutions.

The book finishes with a brief dis-

cussion of undecidable problems

such as the ‘Halting Problem’, first

proven undecidable by Turing.

Can we

write a

program

that, given

any pro-

gram p,

and any

input i,

tells us

if p

halts

when

run

with

i?

21

In his second instalment reviewing well-respected

books on algorithms, John Stout, from King

George V College, Southport, takes a closer look at

Algorithms Unlocked, by Thomas Cormen.

Low-level programming is often perceived

as hard and, as a consequence, was previ-

ously reserved for older students, principal-

ly studying A-level. More recently, the

availability of controlled assessment tasks

at GCSE using simulators has provided

challenges for a younger age group. Such

simulators have a long history. The ‘little

man computer’ has its origins in an analo-

gy first developed at MIT. The little man

fetches, decodes and executes each low-

level instruction in turn. Using a very re-

stricted instruction set helps bring home to

students how the high-level constructs they

take for granted are implemented at the

level of the machine.

An entertaining and simple

introductory simulator suitable

for younger KS3 children is

available on the CAS Com-

munity at resources/1383. It

uses a numeric (decimal)

instruction set. Using a sam-

ple, or writing their own short

sequence, students can then

watch the little man (shown) explain each

step, or give him the instructions to run the

program stored in memory. If low-level

programs are new to you, use it to tackle

the second exercise below. Roger Davies

Using ‘goto’ in code is widely regarded as

bad practice. Greg Michaelson, Professor

of Computer Science at Herriot-Watt Uni-

versity, suggests some potential benefits.

I think that, in essence, computers are memory machines. Memories are

associations of addresses and contents, and, at the lowest level, both

are bit sequences. The beauty of bit sequences is that they have no in-

herent meanings but can be made to behave as if they represent arbi-

trary entities: hence the universal power of computers.

A most important concept is that a bit sequence in memory can repre-

sent the address of another bit sequence in memory. Thus, to function at

all, computers depend fundamentally on indirection: the ability to get bit

sequences from memory, or put them into memory, using other bit se-

quences as addresses.

In a von Neumann CPU, a running program is sequenced by the fetch/

execute cycle, through repeated indirection on the program counter (PC)

holding the address of the next instruction. Blocks of instructions are held

in consecutive locations in memory and, after each instruction is execut-

ed, the PC may be automatically incremented to give the address of the

next instruction.

However, this implicit linear sequencing can be changed by a branch

instruction which includes an explicit address to be placed in the PC.

Branches are either unconditional, or conditional on some program state,

for example flags set after operations.

High-level programming languages abstract away from the underlying

memory machine. We tend to focus on variables as the central abstrac-

tion from address/contents associations, but some of the earliest ab-

stractions were:

 labels to abstract from addresses in code;

 goto statements to abstract from unconditional branches, by specify-

ing labels identifying where the program is to continue;

 if statements to abstract from conditional branch instructions following

operations.

Typically, there were also:

 for statements, abstracting from conditional branch iterations over

groups of instructions;

However, most other control flows had to be crafted explicitly out of la-

bels, ifs and gotos.

As computer use exploded through the 1950s and 1960s, there was a

growing expectation that they could be used to tackle increasingly com-

plex problems. But, as programs grew in size and functionality, it took

longer and longer to develop them and it became increasingly hard to

maintain them, especially as there were no well-established standard

methodologies for systematic software development.

In 1968, in a highly influential paper, the pioneering Dutch Computer Sci-

entist Edsger Dijkstra argued that a key factor in this alleged software

SWITCHEDON: www.computingatschool.org.uk 22

1. Show how to translate for and repeat

loops into unstructured code.

2. Show how to translate conditional and

iterative statements into your favourite as-

sembly language.

For details of early

programming lan-

guages for British

computers, see D. G.

Burnett-Hall et al,

Computer Program-

ming and Autocodes,

English Universities

Press, 1964. Alt-

hough long since out

of print, second-hand

copies do become

available on Amazon

and other outlets.

http://community.computingatschool.org.uk/resources/1383

SWITCHEDON: www.computingatschool.org.uk

crisis was the unconstrained use of gotos, observing that complex

chains of branches led to programs that were hard for anyone other than

the original programmer to understand. Instead, Dijkstra urged the use

of structured programming, based on the core building blocks of se-

quences, conditions and iterations, with gotos entirely banished.

Thereafter, structured programming was steadily adopted both in indus-

try and for teaching, and a new generation of imperative languages ei-

ther heavily restricted (C/C++/C#) or entirely lacked (Java, Python) go-

tos. Thus, today it is most unlikely that anyone learning to program will

encounter the goto statement.

Nonetheless, to run on memory machines, high-level goto-free programs

must still be compiled into lower level forms with explicit branches.

Let’s explore this in a bit more detail, using my favourite language

BASIC. Suppose that, for program structuring, we only have the uncon-

ditional GOTO <line> and the conditional IF <condition> GOTO

<line>. Suppose also that A, B, C etc. are line numbers.

We can realise IF…THEN…ELSE… as:

For example:

Similarly we can realise IF…THEN… as:

For example:

Finally, we can realise a WHILE loop as:

For example:

I think that understanding the computer as a memory machine gives

integrative insights into the deep connections between total immersion in

a favourite multi-user game and billions of transistors turning on and off

very very quickly. Each year I show our second year undergraduate

students these equivalences, using C and ARM assembler in our case.

And, each year, several have commented that they now better under-

stand the implications of their programming choices, and how helpful it

would have been to have seen this much earlier.

Programs built from unconstrained gotos

are justly derided as spaghetti code. To

see how spaghetti clouds clarity, let’s

compare structured to unstructured code

for a slightly larger example using our

translation templates. Here’s a binary

search:

And here’s the equivalent unstructured

BASIC:

Even knowing what the BASIC is sup-

posed to do, it’s much harder to follow the

control flow and work out what’s going on.

Note the redundant branch to line 55 on

line 45. At the machine code level, an opti-

mising compiler would spot this and patch

the equivalent of line 45 to branch directly

to line 15.

23

Computing At School
are supported and
endorsed by:

Pause for a moment to consider a

classroom forty years ago. There

were no computers, no internet,

no projectors, not even photocopi-

ers. Pause for a moment to con-

sider how easy the ‘establishment’

might dismiss those promoting the

virtues of the personal computer

— still in its expensive infancy.

Fast forward: the new millennium

witnesses an unprecedented

boom in school IT. If, like me, you

winced at the prevalence of edu-

cational software that replicated

19th Century ‘skill and drill’ meth-

odology, pause for a moment to

consider the words of Seymour

Papert, written forty years ago.

Contrasting such ‘instructionism’

with his own ‘constructionism’, he

notes: “One might say the com-

puter is being used to program the

child. In my vision, the child pro-

grams the computer, and in doing

so, both acquires a sense of mas-

tery over a piece of powerful tech-

nology and establishes an intense

contact with some of the deepest

ideas from science, from mathe-

matics, and from the art of intel-

lectual model building.”

Seymour Papert passed away on

July 31st, aged 88. His ideas were

ahead of his time and have heavi-

ly influenced a new generation of

Computing educationalists, includ-

ing, for example, Mitch Resnick,

creator of Scratch. In today’s short

term, target-driven environment,

let your class pause for a moment.

In Papert’s words, give them

“time to think, to dream, to gaze,

to get a new idea and try it and

drop it or persist, time to talk, to

see other people’s work and their

reaction to yours.” Let them pause

for thought. In so doing, draw con-

fidence, knowing your practice is

following in the footsteps of an

educational giant. Roger Davies

In the second week of November, all schools, Primary and

Secondary, can again enter their students into the UK Bebras

Challenge. Each year the number of students taking part has

nearly doubled; we are hoping for over 100,000 this year!

One reason for the continued growth is that we prioritise par-

ticipation for all and work hard to help schools administer the

challenge without hassle. Students can take part during their

normal Computing lessons in Bebras week and we work

with schools to accommodate them if they have a technical

problem or practical issues such as running a two-week timetable.

The Bebras Challenge does not require any programming ability but instead

asks students to solve engaging Computational Thinking problems. We are also

building a legacy of problems that can be attempted by students or assigned by

teachers at any time during the year. There are PDF booklets published with full

answers and an explanation of the Computer Science behind the problems. All

of this information can be found by visiting bebras.uk.

As well as ensuring schools have plenty of certificates to give out, last year we

invited some of the most amazingly talented students up to Hertford College

and the Computer Science Department at Oxford University for a final round

and celebration. We intend to run this over two weekends, at the end of January

and the beginning of February 2017, so that we can invite more students. With

ever-increasing numbers, we rely on our sponsors to help us keep UK Bebras

free to schools. We are immensely grateful to the Raspberry Pi Foundation and

ARM Holdings who have seen us through the early years of UK Bebras, and for

the hard work of Professor Peter Millican and his team at Oxford. It has been a

pleasure to have Google join us this year, encouraging us to be more ambitious

than ever and generously providing funding to realise those ambitions.

Having identified so many talented UK students, how can we help them

make progress? We are adding a Where Next page to the Bebras website

with links to some amazing resources and introducing a new pilot competi-

tion (The Kestrel Challenge) in March. The top 10% of students in the four

oldest age categories in the Bebras challenge will be eligible. Students will

be asked to code solutions to Computational Thinking problems. Again the

challenges will be archived in a self-marking format for all schools to access

later. We will also provide a set of specimen challenges and tutorials to help

students make the transition. The challenges will consist of some easier pro-

gramming problems at the start (see the example below where Blockly com-

mands are supplied) followed by more extended problems that can be solved

using any programming language. Each challenge will take an hour to com-

plete. More details will follow shortly. Chris Roffey

Logo Maker: A new country has been founded from

five small, friendly countries. A program is required

that can be used to create its new logo. Using only

the blocks supplied, write a program that draws the

shape shown. You may alter the variable values but

you must keep the line length equal to 100 units.

http://bebras.uk

