
Computing
Science Software Design

and Development

Advanced Higher
Programming
(using Python and Pygame)

Version 1

Project 1 - Balloon Burst

© G. Reid, D. Stott, 2015

Draf
t

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 20151

Contents

Page 1 How to use each booklet
Page 3 Introduction & AH Programming Summary
Page 4 Projects Covered
Page 5 Object Orientated Programming Theory

Project 1 - Balloon Burst

Page 13 Project Outline

Coding Balloon Burst

Page 14 The Game Window
Page 15 The Blit Command
Page 16 Creating the Balloons
Page 17 No Balloon Appearing!
Page 18 Creating Groups
Page 19 Stop and Test Regularly
Page 20 Timing the Creation of Balloons
Page 21 Making the Balloons Move
Page 22 The Player’s Dart
Page 24 Bursting Balloons and Keeping Score
 Displaying the Score
Page 25 Adding a Pop Sound

Extension Work

Page 25 Balloon Burst Challenges
Page 26 My First Pygame

Improving Your Programming

Page 27 Designing Better Classes (Mistakes made in Balloon Burst)

SDD

Advanced Higher Programming

2

How to use each booklet
There are four booklets in this series:

● Project 1 - Balloon Burst
● Project 2 -
● Project 3 -
● Project 4 - Galaxians

The four booklets have been written to cover the following content in Advanced Higher Computing.

This booklet contains object orientated programming theory and practical work. Make sure you read both
carefully to ensure a full understanding of the code.

There is an expectation at Advanced Higher that pupils work independantly. Ensure that you have spent a
significant amount of time trying to overcomes issues in your code before you ask for help.

Advanced Higher

Languages and Environments
Programming Paradigms

Object Orientated
● object
● encapsulation
● method
● property
● class
● inheritance

Imperative
● variables
● sequence
● selection
● iteration
● modularity

Computational Constructs and
Principles (for software and
information systems)

Explain and Implement the following constructs:
� reading and writing data from sequential files
� reading and writing data to and from databases

Data Types and Structures � records, linked lists
� 2-D arrays
� queues, stacks
� arrays of records and/or array of objects

Standard Algorithms ● linear and binary search
● selection with two lists
● sort algorithms (insertion, bubble, quicksort)

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 20153

Draf
t

Draf
t

Introduction

As many pupils who program have an interest in computer games, this unit will cover the
programming requirements of the Advanced Higher course by teaching the basics of game coding.
Before you start work ensure that you have the following installed:

� Python 3 - the programming language used in this unit.
� A suitable Python Code Editor - PyScripter was used to write the projects in this unit but any

Python development environment may be used.

� Pygame - a module library of procedures and functions used to create and manipulate game
sprites.

As you progress through this unit you will experience a series of increasingly complex projects in the
form of simple games. Each project will include detailed explanations of the code which should be
used as a reference throughout your course. On the completion of each project you will be expected
to design and create a game of a similar complexity using the programming paradigms, constructs,
data structures and standard algorithms covered in the projects.

AH Programming in Summary

In the Advanced Higher course you are expected to learn, understand and be proficient in the
following.

� object-orientated programming
� several new data structures including linked lists,

dictionaries, records, queues, stacks and 2D arrays

� file handing
� reading and writing to/from databases
� standard algorithms including binary search, selection

with two lists, insertion sort, bubble sort and quick sort.

SDD

Advanced Higher Programming

4

Draft
Projects Covered in Unit
Balloon Burst
This game will be used to introduce the concept of objects, instances and methods. The game will
generate different coloured balloons approximately once every second. These will drift left and right
across the game window. The user has to click on the balloons to burst them. Points will be award
for each balloon burst. The blue balloons should be avoided as they will end the game.

Project 2 - Game to be decided - Preview for staff below
Project will include: animated sprites, 2D array use, high score stored in text file (keyboard input
required). Objects will now include concepts of inheritance an encapsulation.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 20155

Draf
t

Draf
t

Projects
Project 3 - Centipede - Preview for staff below
Project 3 will be used to review and practice the concepts learned in project 2. The amount of help
given to pupils will be reduced. High scores will be read from text file, sorted and written back to
empty file. Concept of linked list will be used.

Project 4 - Galaxians - Preview for staff below.
Project 4 will focus on design in preparation for coursework task. The final project will keep
usernames, passwords and high scores in a database. The game will use SQL to store each player’s
score and provide the player with top scores and personal scores, both sorted. The game will also
demand a level of problem solving not seen in the previous game. (trial version was 500 lines of code
without the database linking)

SDD

Advanced Higher Programming

6

Draft
Object Orientated Programming Theory
When programming computer games you quickly realise that duplicates of multiple objects are a regular
occurrence. Look at the screen shot below from a simple platform game design.

Even in a simple game we have to create multiple objects.

 x 14 x 17 x 15 x 14 x 14 x 2 = 76 objects

For each of the above 76 objects let’s imagine that we are required to store the following simple data:
 X Coordinate - real
 Y Coordinate - real
 Image - graphic
 Visible - boolean

A programming paradigm is a fundamental style of computer programming, serving as a way of
building the structure and elements of computer programs. In Higher computing you learned to program
using an imperative style of programming. Imperative programming uses variables and arrays to store
data in memory and then uses procedures (containing assignments, conditional statements, loops and
arithmetic operations) and functions to change the state of the stored data.

If we used an imperative style of programming to write the above program we could store the required
data using variables or arrays.

If simple variables were used to store
the game objects above, 304 variables
would have to be created, named and
assigned values.

We can quickly surmise that a solution involving individual variables is unmanageable and would lead
to thousands of lines of unnecessary code.

XCoord 68

YCoord 152

Image grass.png

Visible Yes

x 76}

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 20157

Draf
t

Draf
t

If arrays were used instead to store the object data then 4 arrays of 76 elements would be required.
This solution, although better, also has flaws.

for each of the 76 elements (one for each object)

To examine the flaws of the imperative array solution let’s imagine that some of our objects (blocks)
move down slightly when they are stepped on and some other objects change to a different type of
object when they are touched. New arrays would have to be created to store this additional
information for the game objects.

From the tables it is easy to see the flaw in the array solution. If some of our objects require the
additional data and some do not it is inevitable that we will create arrays that are only partially filled.
This is inefficient as array elements would be created but then would never be used.

A solution to the issues above is to change our programming paradigm from imperative to object-
orientated.

XCoord
76

99

102

115

128

154

167

180

…

YCoord
256

256

256

256

256

269

269

282

…

Image
crate.png

crate.png

grass.png

grass.png

grass.png

crate.png

crate.png

stone.png

…

Visible
Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

…

XCoord
76

99

102

115

128

154

167

180

YCoord
256

256

256

256

256

269

269

282

Image
crate.png

crate.png

grass.png

grass.png

grass.png

crate.png

crate.png

stone.png

Visible
Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

OffsetDown

3

6

3

6

AlternativeImage
smallCoin.png

largeCoin.png

star.png

heart.png

array index

0

1

2

3

4

5

6

7

8

array index

0

1

2

3

4

5

6

7

SDD

Advanced Higher Programming

8

Draft
A program written in an object-orientated paradigm uses classes, objects, methods and instances to
define and manipulate objects.

Classes
A class contains a set of properties (or
attributes) and methods that define an
object’s behaviour.
We decided earlier that the Block
objects in our game require the basic set
of attributes visualised in the diagram to
the right, the x and y coordinates,
whether we can see the block or not and
the background image of the block.

Constructors and Instances
Each time we create an object using a defined class we create an instance of the object. Python uses the
function def __init__ to create instances of objects. For each object created the program passes in a list
of parameters into the ‘init’ function, allowing each object to be created with different attributes. In
object orientated programming a function that creates an object is known as a constructor.

The Python code below shows:
● a class called ‘Block’ being defined
● the def __init__ function receiving 4 parameters and assigning the to the attributes of the class
● three objects being created called ‘grass1’, ‘stone1’ and ‘grass2’.

The use of the word ‘self’ in the above function is one of the key concepts of object orientated
programming. In simple terms it means “for THIS object”.
When the instance of the Block class, ‘grass1’, is created the 4 actual parameters passed
(64,123,“grass.png”,True) are then stored as attributes “for this new object” using the formal parameters
(xCoord,yCoord,image,visible).

self.Xcoordinate = xCoord
Would be implemented as:

thisObject.Xcoordinate = 64

xCoord

yCoord
image

visible
class Block

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 20159

Draf
t

Draf
t

An object-orientated style of coding suits game programming extremely well. Game objects can be
created where the attributes of the objects are grouped and handled together. New objects can be
created and then modified or deleted as required by the game.

Attributes
To use the stored object attributes in code we refer to the object and then the attribute, ‘stone1.Image’.

Some examples of
how to use object
attributes are
shown on the right.

The dot . notation used to access the attributes of an object is another key concept of object orientated
programming.

Class Attributes
Note that classes may also contain class attributes. These attributes are the same for each object of that
class.
Class attributes can be set to an initial value when the object is created rather than requiring their values
to passed as parameters.

Let’s say that every block in our game is 20x26 pixels . This could be coded as follows.

Line 14 - creates a new object and assigns
values to the two coordinates, image and
visibility attributes.
However, we can see from the above
output that the object now has additional
values for length and height.

SDD

Advanced Higher Programming

10

Draft
Methods
In game programming certain events are repeated over and over again. These events are dealt with in
object-orientated programs by adding functions to classes to manipulate the object’s behaviour. These
functions may move characters, react to collisions, increment a score etc. A function attached to a class
is called a method (or member function).
The example below shows the use of a method which moves a Block object. By passing different values
into the function the object could be moved by differing amounts.

Line 23 - The method is called using
the parameters (0,6). This would
increment the x coordinate by 0 and
the y coordinate by 6.
Note that the move method is called
for a specific object, ‘grass1’, using
the dot notation.
The actual parameters of 0 and 6 are
then passed into move method for
that specific instance of the Block
class. This ensures that we only
change the coordinates of the
‘grass1’ instance.

Destructors
When an object is no longer required it can be deleted using a method known as a destructor. In python
objects may be deleted using the del command.

The object ‘grass2’ is constructed on line
13 and then deconstructed on line 16.

When this code is executed the Image
attributes for the first two objects are
displayed. The third print command
creates an error message saying the
object doesn’t exist.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201511

Draf
t

Draf
t

Summary of Object Orientated Program

Hopefully you are now gaining an understanding of the benefits of object orientated programming and
its suitability to games programming.

A summary of these and other benefits of object orientated programming are listed below:

● The data structures and methods used in OOP relate to real life attributes and actions.
● Each object controls its own actions and how other objects interact with it.
● Objects can be deleted, reclaiming resources such as the memory they used.
● Code, once designed and implemented can be reused/recycled.
● The attributes of the object can be hidden, only accessible accessor methods.
● The attributes of the object can be hidden and only changed through mutator methods.
● Program maintenance is easier as objects can be updated/modified independently of other code.

Note - Inheritance will be discussed later in this unit.

Pygame Explained

Every program written using the pygame library should have a fairly similar structure.

You will start each project with a Pygame template file, supplied by your teacher. This file is shown
and explained on the next page.

Import libraries

Define classes

Initialise pygame

Set up the game window

Define additional functions and procedures

Start the main game loop

 Check for events

 Update sprites

 Redraw window

End the main game loop

SDD

Advanced Higher Programming

12

Draft
The previous structure is shown and explained in the code below:

Read the program comment lines carefully as they explain each line of code. The above file will be
supplied to you as a template for all your Pygame projects.

Once running the program continually repeats the code in the ‘Main Program Loop’. Each time the
program checks for events like a key being pressed or the mouse being clicked. It will then execute
the game code, updating sprites, checking for collisions, updating scores etc.
Once every object, attribute and value has been updated, the objects on the screen are redrawn and
sent (flipped) to the monitor. If this is done faster than the specified clock tick the program will pause
before looping again. This effectively creates a frame rate for the game.

Remember the Frames Concept
The concept of Pygame code running as individual frames is very important. When programming in
Pygame constantly keep in mind that your code is generating the next frame image (or snapshot) of
your game.
Movement between frames will be relatively small. For example if you write code within the main
program loop to make a character jump into the air and fall again this entire action will take place in a
fraction of a second. When you run the code your character will look like they’ve not moved. Instead
think of how far your character will move up each frame, when will they stop and how fast will they
will fall again. If your whole jumping movement lasts 1.5 seconds and your game is running at 20fps
the screen will have been drawn 30 times during that process.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201513

Draf
t

Draf
t

Project 1 - Balloon Burst

Project Outline
Description - The game will start in a landscape window of 800 by 400 pixels. Within the window
small balloons of different colours will appear at the left hand edge. The balloons will drift right and
then left across the window. The speed at which the balloons move will be matched with their colour.
Purpose - The user is required to move a dart round the screen with a mouse. They will click on the
balloons at which point they will burst and disappear. The user will gain points for each balloon they
burst. During the game blue balloons will appear which the user should avoid clicking on as the game
will end when a blue balloon is burst.
Objects, Attributes and Methods
The tables below are examples of UML (Unified Modelling Language) class diagrams, part of a
design methodology used in object orientated programming. These note from top to bottom: class,
attributes and methods.

Screen Design

95
Window width = 800

Window
height =
400

Balloons appear below 50 pixels

Balloons drift
left and right

Balloon

Integer: Xcoordinate
Integer: Ycoordinate
Integer: Speed
String: Direction
Integer: BalloonType
Integer: Score
Graphic: BalloonImage
Constructor (XCoordinate,YCoordinate,Direction,BalloonType)
Move Balloon ()

Dart

Integer: Xcoordinate
Integer: Ycoordinate
Graphic: DartImage
Constructor (XCoordinate,YCoordinate)
Move Dart (mouseX, mouseY)

SDD

Advanced Higher Programming

14

Draft
Coding Balloon Burst

The Game Window
All PyGame projects should start with setting up your game window. For Balloon Burst we shall
create the window shown below with the following attributes:
● a resolution of 800 x 400
● window title - “Balloon Burst”
● a background image of the sky

Open up the PyGame template file and make the changes shown below to the window setup. Note
that each time you are shown code there will be reference to the line numbers. These line numbers
will not match your file exactly. Concentrate of finding the correct place to add the new code and
ensure that you add every line required. Test your program thoroughly at each stage.

● edit the window resolution (line 9)
● edit the window title (line 10)
● add code to load in the background image (line 11)
● add code to hide the mouse cursor while the game is running (line 12)
● create a new folder and save your file

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201515

Draf
t

Draf
t

You’ve now used your first two Pygame library functions!
pygame.display.set_mode()

This creates a display Surface to a given resolution. A Surface is a Pygame object used to represent
images. Our code creates a new image object called “screen”.

pygame.image.load()

This function loads a new image from a file ("SkyBackground.png") and creates a new Surface. We
have assigned this image to the Surface “background”.
Note that the file name may be proceeded by a path name to the file. As ours does not, the graphic
must be stored in the same folder as your saved Balloon Burst program code. Make sure the
background graphic supplied by your teacher is copied into the correct folder now.
When you create your own games you will have to prepare all your own graphics. This can be done
using a suitable graphic editing application and exporting the files at the resolution you require and in
a suitable standard file format.

The Blit Command
The blit command is used to draw one Surface onto another. As the main program loop runs we will
use this command to create a single video frame by drawing all our objects onto the screen object.
● add the blit command to draw the “background_image” Surface on top of the “screen” Surface

(line 30)

The blit command contains coordinates which are
used to position one image over the other.
The “screen” surface has a resolution of 800x400.
The “background_image” also has a resolution of
800x400. To place one surface over another of the
same size we would position it using the
coordinates [0,0]. We will use this technique later
to draw our balloons at specific coordinates.
Run your program to test your game window.

SDD

Advanced Higher Programming

16

Draft
Creating the Balloons
Time to create our first object
using object orientated
programming.
To create a Balloon Class add the
code below to the area of the
template marked
“# Define Classes (sprites) here”.

Line 6 Here we declare a new class called ‘Balloon’. Note that class names always start with a
capital letter. This class will inherit the attributes of a Pygame sprite (line 9).

Line 8 The constructor method def __init__ is used to create a new instance of the Balloon class.
When we call this method we will pass in values for:

○ x,y - these will become the coordinates of the balloon on the “screen” Surface.
○ direction - whether the balloon is currently moving “left” or “right”.
○ balloonType - this integer, with values 1-4, will be used to control the colour of

balloon that is created.
Line 11 This line creates a class property called ‘Direction’ and assigns it the value that was

passed into the init method.
Line 12 This creates a BalloonType property to store the type of balloon as an integer. The game

will have 4 types of balloon - red, blue, green and yellow.
Lines 14-29 Each type of balloon is assigned a different image, speed and score.
Line 31 A new Surface is created for the balloon object.
Line 32 The Colorkey() method is used to ensure that the transparent areas of the balloon png

image files are actually transparent.
Line 33 The chosen balloon image is copied onto the new Surface created in line 31.
Line 34 Pygame uses Rect objects to store and manipulate rectangular areas. This line creates a

new Rect object from our image created in the above three lines
Line 35-36 We can now assign the properties of the Rect object (rect.x and rect.y) to the x and y

coordinates that were passed into the init method. This has the effect of positioning the
Rect where we want it and can be used later to move our new Balloon object.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201517

Draf
t

Draf
t

To create instances of the Balloon class we now need to call the init method. Where we call instance
methods in our code will determine how often objects are created.
By placing the call statement inside the main program loop we can continually create balloons while
the game is running.

● add lines 61 to create and store a random y coordinate between 50 and 350 for each balloon
● add line 4 as the random module must be imported before the function will work
● create a random balloon type between 1 and 4
● create a new instance called ‘balloon’ by calling the class Balloon. Note the actual properties

we’ve given the new object are passed as parameters when we create the object:
 - an x coordinate of 0 to ensure every balloon starts at the left hand edge of the screen
 - a random y coordinate
 - a set direction so that every balloon will start by moving right
 - a random balloon type

No Balloons Appearing!
If you run the program you should see that it executes without crashing but no balloons appear. This
is because we have not yet drawn the objects on the display surface. This must happen once during
each repetition of the main program loop.
In a game there are always events that occur multiple times. In Balloon Burst this includes:

1. checking to see if the user has clicked on each balloon in turn
2. checking each balloon to see if it has touched the edge of the window and must therefore

change direction
3. moving every balloon left or right
4. checking to see if the user has clicked on any blue balloon, which would end the game
5. drawing each balloon in turn on the window’s surface

To simplify the handing of these events Pygame allows objects to be grouped together. These groups
can then be used to handle the above multiple events, for example, drawing the balloons.

SDD

Advanced Higher Programming

18

Draft
Creating Groups
Designing groups is an important part of programming in Pygame. The simplicity with which you will
be able to handle your game objects will depend on the skill with which you design/create groups of
objects. Objects in Pygame programs can be added/removed from groups or copied from one group to
another.

In Balloon Burst we will create three groups as shown in the diagram below:

Each new instance of a balloon will be added to 2 of the above groups:
● either ‘otherBalloons’ or ‘blueBalloons’ depending on the balloonType generated
● allBalloons

Three groups will allow our program code to:
● move every balloon - ‘allBalloons’
● check to see if any balloon has reached the left or right hand edge of the window - ‘allBalloons’
● check to see if the user has clicked on a red, yellow or green balloon - ‘otherBalloons’
● check to see if the user has ended the game by clicking a blue balloon - ‘blueBalloons’
● draw all the balloons on the display surface - ‘allBalloons’

otherBalloons

blueBalloons

allBalloons

Each
object
appears
twice.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201519

Draf
t

Draf
t

The following code shows how groups can be used to draw the Balloon objects.

● add lines 51 to 53, in the
position shown, to create the
three groups

Now add the following code inside
the main program loop.
● By adding lines 68-71 and using

a simple selection we can
determine which of two groups
the Balloon objects are added to.

● Adding line 72 ensures that
every balloon created is added to
the ‘allBalloons’ group.

● We can then draw every Balloon
on the display surface using line
75.

As the game expands we will draw more objects after line 75. Note that the blit command for the
background is used before we draw the balloons. If we blit the background last it would be drawn on top
of all the other objects.

Stop and Test Regularly!
Run your program to check that it works. It should currently:
● Create a game window

sized at 800x400 pixels.
● Display a background

image in the window
● Hide the mouse cursor

when it is over the
window

● Create multiple balloons
on the left hand edge of
the window (note - the
balloons do not move
yet)

If your code doesn’t execute any of the above, work your way back through the booklet to find what
you’ve missed or typed incorrectly.

SDD

Advanced Higher Programming

20

Draft
Timing the Creation of Balloons
The last line of the main program loop ensures that the Balloon Burst
is running at 20 frames per second. As instances of our Balloon
objects are being created inside the main loop this means that our
balloons are being created at a rate of 20 per second.
If our game is to be playable we need to slow the balloon generation down and also introduce some
random element as to how fast the balloons are being created. To do this we will use the same clock
used to control the frame rate.

When Pygame is initialised using the line below a clock starts ticking/counting from 0 in milliseconds.

To create balloon objects at random intervals we require a variable to control when the balloons are
released.

timeTillNextBalloon = random.randint(1000,2000)

This can be programmed by:
● initialising the timeTillNextBalloon variable (line 55)
● placing our balloon generation code inside a selection statement to ensure the code is only executed

after the current time (pygame.time.get.tick()) is greater than timeTillNextBalloon (line 67)
● incrementing the timeTillNextBalloon variable by a random value (line 68)

milliseconds
000 000 000 000000000 000 000 000 time

balloon created at 1374ms (this
value was randomly generated) balloon created at 3378ms (the interval between the two

balloons was again randomly generated and added on to
the first time)

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201521

Draf
t

Draf
t

Making the Balloons Move
To move the balloons we have to update their position on the screen, currently stored using rect.x and
rect.y.
● To move the Balloon objects to the right we will increment the rect.x property of each balloon by

its Speed property.
● To move the Balloon objects to the left we will decrement the rect.x property of each balloon by its

Speed property.

Changing the value of multiple object’s properties is usually accomplished using a method. Remember a
method is a function attached to a class.
● add the moveBalloons() method shown below to the Balloon class
● add lines 85 and 86 to call the moveBalloons() method for each balloon object in the allBalloons

group

When you run the program you’ll find that balloons move nicely across the window but do not stop
when they reach the right hand edge.
● add lines 85-89 to check the position of each Balloon object in the window. If the rect.x property is

beyond the limits given, the Direction property of the Balloon will be changed.

Note that the balloons’ movement right (line 88) has been limited to 774 and not 800. This is because
the balloon graphics are 26 pixels wide. Since rect.x and rect.y note the top, left hand edge of the
graphic we have to allow for the width of the graphic in our code.
Try changing the right hand limit to 800 and observe the difference when the code runs.

SDD

Advanced Higher Programming

22

Draft
The Player’s Dart
To pop the balloons the user will be given a small dart which they can move around the game
window with their mouse.
To create the dart we will need another class (with its own init method) and a single instance of that
class.

● add line 46 to declare the new class as another Pygame sprite object
● add lines 48 to 56. Note that the constructor __init__ function is much simpler than our Balloon

equivalent. We are only require a single image and the x & y coordinates of the sprite.

To create a single instance of the dart object we call the __init__ function before the main program loop.
● add the lines 75 to 77 below to create an instance of the dart and add it to it’s own group

Remember that to see the dart we must
add a draw command at the bottom of the
main program loop.
● add line 113 to draw the dart

Again the order of the draw commands is important. By placing darts.draw(screen) after
allBalloons.draw(screen) the dart will appear to be in front of the balloons.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201523

Draf
t

Draf
t

To move the dart with the mouse we have to use the events section of the main program loop.
During execution of Pygame code the program stores mouse movements, mouse clicks, keyboard presses
and joystick movements in an event queue. Each time the main program loop is executed it begins by
checking for events in the queue.
The initial Pygame template included lines 84 to 86 below. These lines check the event queue to see if
the user has closed the window. The boolean variable done is used to end the main program loop.
Leaving the main program loop would cause the program’s execution to finish.

● add line 88 above to check the event queue for a mouse movement
● add line 89. This copies the x and y

coordinates of the mouse from the
event queue into an array of two values
called mouseposition[].

● remember to add line 78 to declare the
mouseposition[] array

● line 90 calls the method moveDart() and passes the coordinates of the mouse as a parameter.
● add the moveDart() method to the Dart class as shown below in lines 58 to 60.

The moveDart method simply takes the coordinates of the mouse and assigns them to the rect.x and
rect.y properties of the Dart object. As this method is called every time the user moves the mouse this
has the effect of making the dart follow the mouse.

SDD

Advanced Higher Programming

24

Draft
Bursting Balloons and Keeping Score
As discussed several times already Pygame programs reply on the use of sprites, groups and the
interactions between them. We can sense when two groups collide by using the command below.

pygame.sprite.groupcollide(group1,group2,False, False)
The boolean values at the end are used to kill any sprites from either group that have collided. The
ability to delete (kill) an object is one of the defining attributes of object orientated programming.

The code below senses a mouse click event and deletes any balloons that are touching the dart at that
time. The code updates the score or ends the game depending on the type of balloon that was clicked.

● add a new MOUSEBUTTONDOWN event (line 97) below the MOUSEMOTION event. Note that
event.button == 1 means that the mouse button is down (it’s been clicked).

● add line 98 to create a list of all objects in the blueBalloon group that are colliding (touching) the
darts group when the mouse was clicked.

● add lines 99 & 100. If the list of balloons created is longer than 0 in length a blue balloon has been
hit and the game should end by setting the flag variable done to True.

● add lines 101 to 103. These lines create a list of objects that have collided between the groups darts
and otherBalloons. We can loop through this list and use the Score property of each Balloon object
in the list to update the game score.

● add line 104 to kill any balloons in the balloon group that are colliding with the dart sprite. When
objects are killed they are deleted from every group they exist in (blueBalloons, otherBalloons and
allBalloons).

● remember to declare the score
variable (used in line 103),
shown below in line 79

Displaying the Score
To display text Pygame creates an image of the text which is then blitted to the screen display at given
coordinates. The code for this is shown below.

� add lines 72, 137 and 138 as
shown below.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201525

Draf
t

Draf
t

Adding a Pop Sound
Any good game has sound so it would be good if we added a popping sound to our game when we burst
a balloon.
As with graphic files a sound is created as an object using the Pygame module library functions.

� add line 74. You will need to have the sound stored in the same folder as your Python file.
� add line 108 below. The positioning of the line the plays the sound is important. Using the loop

below (line 106) makes sense as here the code loops through a list of Balloons objects that have been
hit. Adding a sound here will play the pop sound for each object in the hitBalloons list.

That’s project 1 finished. Make sure you test the game thoroughly.
Note that the game may run slowly with some lagging if you run it through an Interpreter in your IDE.
Try double clicking on the python file in its folder and you should find it runs more smoothly.

Balloon Burst Challenges
Try implementing the following on your own. The suggestions below are listed in increasing order of
difficulty.

1. When creating an instance of a balloon make the Balloon objects appear at a random speed.
2. Add a few bonus objects that exhibit the same behaviour as the balloons. These should move

faster but have a higher score associated with them.
3. Add a special gold balloon that will kill all the blue balloons when clicked.
4. Make the balloons drift slightly up and down as they move across the game window.
5. Add text to each balloon so that each balloon displays its value in the middle.
6. Add a ‘game over’ screen to display the final score for 5 seconds.
7. Add an initial screen that allows the user to set the difficulty: easy, medium or hard. The users

choice should determine the speed of the balloons and how often they appear.

15

SDD

Advanced Higher Programming

26

Draft
My First Pygame
Following instructions and explanations like those in the previous pages is a good way to learn but as a
programmer you must be able to work and problem solve independently.
After each of the four projects there will be an expectation that you create a similar program of your own
that uses the concepts you have learned in the previous project. Pygame concepts covered up to this
point have included:

● understanding the structure of a Pygame program
● creating a Class (including sprites)
● using the constructor method __init__
● creating an instance of an object
● adding images to Surfaces
● bliting one Surface onto another Surface
● moving objects using the sprite rect.x and rect.y properties
● using the clock to control events
● events - sensing mouse movement and mouse clicks
● creating lists of objects that have collided
● killing objects following collisions
● bliting text to the screen surface
● using the done variable to end the game

Now is your chance to create a game of your own. In later projects we will discuss a more formal
approach to design and planning. For now a suggested order of stages to follow is detailed below.
1. On paper draw out a basic design for a game.
2. Create a UML class diagram to note the classes, attributes and methods for each object in your game.
3. Devise a plan of attack by listing the order in which you are going to implement the different parts of

the game.
4. Write your code.
5. Test your game yourself.
6. Ask others to verbally evaluate your game for: ease of use, playability, overall look and enjoyment.
For reference, make use of the Documentation section of the Pygame website. Don’t be afraid to teach
yourself in addition to using what you learned in project 1.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201527

Draf
t

Draf
t

Designing Better Classes (Mistakes made in Balloon Burst)
They say that if you ask 20 programmers to solve the same problem, you’ll end up with 20 different
programs. So what makes one program better than another?
As this was your introduction to Pygame programming (and maybe your first experience of object
orientated programming) the code in balloon burst was simplified to the point that it would be described
by an expert as “poorly structured”.
To explain…

Discussion Point 1
One important rule of object orientated
programming, broken in Balloon Burst, is that
“properties and behaviours should remain
separate within Classes”.
In the constructor method, code has been
added to create properties for 4 different types
of balloon. By doing this we are modifying
the behaviour of the balloons (setting speed,
direction and position) at the same time as we
are creating properties for the new object.

This issue may be fixed by coding the constructor, as a
method that simply creates an object with default values.
No parameters are passed into the constructor as we are
creating an instance of a Balloon object without any
information on how it is to behave.
The object can then be given values
for position, speed, score and
direction within a separate method.
Parameters are passed into this
second method.
It is only at this point that the
behaviour of the object is now
defined.
This new method could be called
again in future if we wished to
change the behaviour of a Balloon
object.
The two methods would be called as shown below.

SDD

Advanced Higher Programming

28

Draft
Discussion Point 2
The lack of efficient organisation of the attributes assigned to each type of balloon is also an issue within
program code. There is in fact no organisation of this data at all as the values are simply assigned within
the constructor class.

If more balloon types were added to the game new code (in the form of selection statements) would have
to be written. This is poor programming as more balloons should simply lead to more stored data and
not an increase in programming constructs.
We could use arrays to store the balloon values for speed, image, score and direction but, as we learned
very early on in this unit, that leads to values for a single object being stored in multiple data structures.
A better solution is to use a record structure. This structure stores data in organised records, each of
which can contain multiple data types. A python record structure to store our balloon values is shown
below.

The name ‘record’ structure is no coincidence as the data structure bears similarities to a database with
its tables, records and fields.

The data is access by copying a record from the table.
For a balloon type of 2, attrs would now store:
'img':'YellowBalloon.png','speed':7,'score':15,'direction':'right'

The different values in the record are then accessed as
shown on the right.

If an additional type of Balloon object is required we now simply add another line to the record structure
without altering any other code.

Advanced Higher Programming

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 201529

Draf
t

Draf
t

Discussion Point 3
A third improvement that could be made to Balloon Burst is increased used of use of methods.
An example of this is where the game checks each balloon to see if it has reached the edge of the game
window. As this section of code changes the behaviour of an object (direction is changed between
‘right’ and ‘left’ as required) this should be handled by a method.

becomes

and

The additional method within the Balloon Class now ensures that the direction properties of the Balloon
objects can only be altered within the class.

Discussion Point 4
Within the main program loop the code currently loops through each balloon object twice. While
teaching the purpose of each part of the Balloon Burst code in turn it made sense to do this.

Now that the code is complete this stands out as a glaring inefficiency. The above code can be rewritten
as a single loop in which each balloon’s position is checked (checkForEdge())and then updated
(moveBalloon ()).

Booklet 2
In booklet 2 we will look at inheritance, encapsulation, sprite animation and file handing.

