Computing

Science

" Advanced Higher
Programming
(using Python agd P

% 1 - Balloon Burst]

Version 1

© G. Reid, D. Stott, 2015

Advanced HighetProgramming

Contents

Page 1 =~ How to use each booklet

Page 3 Introduction & AH Programming Summary
Page4 Projects Covered

Page 5 Object Orientated Programming Theory

Project 1 - Balloon Burst

Page 13 Project Outline

Coding Balloon Burst

Page 14 The Game Window

Page 15 The Blit Command

Page 16 Creating the Balloons

Page 17 No Balloon Appearing!

Page 18 Creating Groups

Page 19 Stop and Test Regularly

Page 20 Timing the Creation of Balloons

Page 21 Making the Balloons Move

Page 22 The Player’s Dart

Page 24 Bursting Balloons and Keeping Score
Displaying the Score

Page 25 Adding a Pop Sound

Extension Work

Page 25 Balloon Burst Challenges
Page 26 My First Pygame

Improving Your Programming

Page 27 Designing Better Classes (Mistakes made in Balloon Burst)

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

How to use each booklet

There are four booklets in this series:

Project 1 - Balloon Burst

Project 2 -

Project 3 -

Project 4 - Galaxians

The four booklets have been written to cover the following content in Advanced Higher Computing.

deanced Higher m

Languages and Environments Object Orientated
Programming Paradigms « object

« encapsulation
« method

e property

o class

« inheritance

Imperative

« variables
e sequence
« selection
e iteration

o modularity

Computational Constructs and | Explain and Implement the following constructs:

Principles (for software and * reading and writing data from sequential files
information systems) * reading and writing data to and from databases
Data Types and Structures * records, linked lists

e 2-D arrays

* queues, stacks
* arrays of records and/or array of objects

Standard Algorithms « linear and binary search
« selection with two lists
« sort algorithms (insertion, bubble, quicksort)

This booklet contains object orientated programming theory and practical work. Make sure you read both
carefully to ensure a full understanding of the code.

There is an expectation at Advanced Higher that pupils work independantly. Ensure that you have spent a
significant amount of time trying to overcomes issues in your code before you ask for help.

Advanced HighegProgramming

/Introduction

As many pupils who program have an interest in computer games, this unit will cover the
programming requirements of the Advanced Higher course by teaching the basics of game coding.
Before you start work ensure that you have the following installed:

* Python 3 - the programming language used in this unit.

* A suitable Python Code Editor - PyScripter was used to write the projects in this unit but any
Python development environment may be used.

* Pygame - a module library of procedures and functions used to create and manipulate game
sprites.

As you progress through this unit you will experience a series o
form of simple games. Each project will include detailed ex
used as a reference throughout your course. On the completion of eac
to design and create a game of a similar complexity using t
data structures and standard algorithms covered in the projec

increasingly complex projects in the
code which should be
ject you will be expected
adigms, constructs,

AH Programming in Summary

In the Advanced Higher course you are expe
following.

nd and be proficient in the

* object-orientated prog

¢ several new data ctures inclue
dictionaries, rg€ords, queues, stack

¢ file handin

* reading and writing

* standard algorithms i i i carch, selection
with two lists, insertion s ort and quick sort.

~

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

AdVancedlH cherbrostamming

/Proj ects Covered in Unit

Balloon Burst

This game will be used to introduce the concept of objects, instances and methods. The game will
generate different coloured balloons approximately once every second. These will drift left and right
across the game window. The user has to click on the balloons to burst them. Points will be award
for each balloon burst. The blue balloons should be avoided as they will end the game.

& Balloon Burst

e «-‘-:-‘i X

Project 2 - Game to be decided - Preview fo

Project will include: animated sprites, 2D array igh sco, keyboard input

required). Objects will now include concepts of inheritan

Adyanced HighegProgramming

/Proj ects m

Project 3 - Centipede - Preview for staff below

Project 3 will be used to review and practice the concepts learned in project 2. The amount of help
given to pupils will be reduced. High scores will be read from text file, sorted and written back to
empty file. Concept of linked list will be used.

Project 4 - Galaxians - Preview for staff below.

Project 4 will focus on design in preparation final project will keep
usernames, passwords and high scores in . Th ill use SOL to store each player’s
score and provide the player with top sc S, both sorted. The game will also

\ /

5 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

/Object Orientated Programming Theory m

When programming computer games you quickly realise that duplicates of multiple objects are a regular
occurrence. Look at the screen shot below from a simple platform game design.

x2 = 76 objects

For each of the above 76 objec agine that required to store the following simple data:

X Coordinate - real
Y Coordinate - real
Image - graphic

Visible - boolean

A programming paradigm is a fundamental style of ¢ ing as a way of
building the structure and elements of computer programs: i
using an imperative style of programming. Imperative program
data in memory and then uses procedures (containing assignmen
arithmetic operations) and functions to change the state of the stor

ses variables and arrays to store
onditional statements, loops and

If we used an imperative style of programming to write the above program we could store the required
data using variables or arrays.

XCoord 68
If simple Var.lables were used to §t0re YCoord 152
the game objects above, 304 variables %76
would have to be created, named and Image grass.png

assigned values.
Visible Yes

We can quickly surmise that a solution involving individual variables is unmanageable and would lead
to thousands of lines of unnecessary code.

\ /
SDD 6

Advanced HigherProgramming

/If arrays were used instead to store the object data then 4 arrays of 76 elements would be required. m
This solution, although better, also has flaws.

array index| XCoord YCoord Image Visible

0 76 256 crate.png Yes
1 99 256 crate.png Yes
2 102 256 grass.png Yes
3 115 256 grass.png Yes
4 128 256 grass.png Yes
5 154 269 crate.png Yes
6 167 269 crate.png No
7 180 282 stone.png Yes
8

I

object when they are touched. New arrays w store this additional

information for the game objects.

array index | XCoord YCoord ' Image Visible OffsetDown Alternativelmage
0 76 256 crate.png Yes smallCoin.png
1 99 256 crate.png Yes 3 largeCoin.png
2 102 256 grass.png Yes
3 115 . 256 grass.png Yes
4 128 256 grass.png Yes
5 154 269 crate.png Yes star.png
6 167 269 crate.png No heart.png
7 180 282 stone.png Yes 6

From the tables it is easy to see the flaw in the array solution. If some of our objects require the
additional data and some do not it is inevitable that we will create arrays that are only partially filled.
This is inefficient as array elements would be created but then would never be used.

A solution to the issues above is to change our programming paradigm from imperative to object-
orientated.

. /

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HigherProgramming

A program written in an object-orientated paradigm uses classes, objects, methods and instances to m
define and manipulate objects.

Classes

A class contains a set of properties (or
attributes) and methods that define an
object’s behaviour. class Block

We decided earlier that the Block
objects in our game require the basic set
of attributes visualised in the diagram to
the right, the x and y coordinates,

whether we can see the block or not and
the background image of the Block.

ygjoord

visible

.YCOOrd
&gyagﬁ

Constructors and 1

Each time we creatg
function def _ ind
of parametchgyi
object orientatd

ed class we create an instance of the object. Python uses the
objects. For each object created the program passes in a list
ing each object to be created with different attributes. In
that creates an object is known as a constructor.

Dject using a d
0 create instance,
e ‘init’ function, 3
programming a fung

The Python code below
e a class called ‘Block’ being defin,
e the def init function re

4 paramete signing the to the attributes of the class

e three objects being created called * grassl’i ‘stonel’ and¥eorass2’.

class Block:

def __init__ (self,xCoord,yCoord,image,visible):
self.XCoordinate = xCoord
self.YCoordinate = yCoord
self.Image = image
self.visible = visible

grassl = Block(64,123,"grass.png",True)
stonel = Block(77,123,"stone.png",True)
grass2 = Block(64,123,"grass.png",True)

The use of the word ‘self” in the above function is one of the key concepts of object orientated
programming. In simple terms it means “for THIS object”.

When the instance of the Block class, ‘grass1’, is created the 4 actual parameters passed
(64,123,“grass.png”, True) are then stored as attributes “for this new object” using the formal parameters
(xCoord,yCoord,image,visible).

self.Xcoordinate = xCoord
Would be implemented as:

thisObject. Xcoordinate = 64

—
SDD 8

Advanced HighepProgramming

/An object-orientated style of coding suits game programming extremely well. Game objects can be m
created where the attributes of the objects are grouped and handled together. New objects can be
created and then modified or deleted as required by the game.

Attributes
To use the stored object attributes in code we refer to the object and then the attribute, ‘stonel.Image’.
#Assigning values to an object's attributes

grassl.XCoordinate = 74
stonel.Visible = False

Some examples of

how to use object #Using an object's attributes in a statement
attributes are if grass2.YCoordinate < 120:
shown on the right. grass2.YCoordinate += 2

#Displaying the attributes of an object
print(grassl.Visible)
print(“Current position =",grass2.XCoordinate,grass2.YCoordinate)

The dot . notation used to access the attributes of an object is anoth concept of object orientated

programming.

Class Attributes

Note that classes may
class.

hese attributes are the same for each object of that

Class attributes g
to passed as pé

object is created rather than requiring their values

Let’s say that every block 0x26 pixels . This could be coded as follows.

1 class Block: #»%* Remote Interpreter Reinitialized »w»~»
2 >5>

3 #Class attributes for Length and Height 20

4 Length = 20 26

5 Height = 26 >>>

6 -+
7 def __init__ (self,xCoord,yCoord,image,visible):

8 self.XCoordinate = xCoord

9 self.YCoordinate = yCoord Line 14 - creates a new object and assigns
10 self.Image = image g 9
11 A T T g values to the two coordinates, image and
12 visibility attributes.
13
14 grassl = Block(64,123,"grass.png”,True) However, we can see from the above
15

B s (prssen. Lanat) output that the object now has additional

17 print(grassl1.Height) values for length and height.
T ——

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

-
Methods

In game programming certain events are repeated over and over again. These events are dealt with in
object-orientated programs by adding functions to classes to manipulate the object’s behaviour. These
functions may move characters, react to collisions, increment a score etc. A function attached to a class
is called a method (or member function).

The example below shows the use of a method which moves a Block object. By passing different values
into the function the object could be moved by differing amounts.

1 class Block:

2
: 'F-Ief}gﬁz . jg Line 23 - The method is called using
el = £ .

5 8 the parameters (0,6). This would

6 def _init_ (self,xCoord,yCoord,image,visible): increment the x coordinate by 0 and
7 self.XCoordinate = xCoord th dinate by 6

8 self.YCoordinate = yCoord €y coordinate by 0.

9 self.Image = image g

10 sadb. sl & yisibie Note that the move method is called
11 for a specific object, ‘grassl’, using
12 #A method 'move’ which increments the coordinate attributes .

i3 #by the values passed in as parameters. the dot notation.

14

B e aavelsedE;acoond;yeoond)s The actual parameters of 0 and 6 are
16 self.XCoordinate += xCoord then passed into move method for
n SIS o that specific instance of the Block
19 #Create an object called grassi class. This ensures that we onl

J g

20 grassl = Block(64,123,"grass.png",True) change the coordinates of the
21 .
22 #Call the move method for the object grassl ‘grassl’ instance.
23 grassl.move(0,6)

Destructors

When an object is no longer required it ca deleted a destructor. In python
objects may be deleted using the del command

1 class Block:

2

3 def __init__ (self,xCoord,yCoord,image,visible):

4 self.XCoordinate = xCoord . .

5 self.YCoordinate = yCoord > is constructed on line
g self.Image = image n deconstructed on line 16.

7 self.Visible = visible

8

9

10 #Create three objects called grassl, stonel & grass2

‘ _ is code is executed the Image
11 grassl = Block(64,123,"grass.png",True)

12 stonel = Block(77,123,"stone.png",True) at‘trlbutes for the ﬁI'St tVYO objects are
13 grass2 = Block(64,123,"grass.png"”,True) displayed. The third print command
b creates an error message saying the

15 #Delete the object ‘grass2’ just created in the above Lline
16 del grass2

17

18 #Display the Image attribute of the three objects

19 print (grassl.Image) *%* Remote Interpreter Relnitialized **»
20 print (stonel.Image)

21 print (grass2.Image)
T —

object doesn’t exist.

dvanced Higher (New))\

t Example.py”, 1lir

Advanced HighegProgramming

/Summary of Object Orientated Program m

Hopefully you are now gaining an understanding of the benefits of object orientated programming and
its suitability to games programming.

A summary of these and other benefits of object orientated programming are listed below:

e The data structures and methods used in OOP relate to real life attributes and actions.

e Each object controls its own actions and how other objects interact with it.

e Objects can be deleted, reclaiming resources such as the memory they used.

e Code, once designed and implemented can be reused/recycled.

e The attributes of the object can be hidden, only accessible accessor methods.

e The attributes of the object can be hidden and only changed through mutator methods.

e Program maintenance is easier as objects can be updated/ i independently of other code.

Note - Inheritance will be discussed later in this unit.

Pygame Explained

Every program written using the pygame $hould hi

Import libraries

ly similar structure.

Define classes
Initialise pygame
Set up the game window
Define additional functions and procedures
Start the main game loop
Check for events
Update sprites
Redraw window

End the main game loop

You will start each project with a Pygame template file, supplied by your teacher. This file is shown
and explained on the next page.

. /

11 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

f AH

The previous structure is shown and explained in the code below:

1 # Basic Pygame Structure

3 import pygame # Imports pygame and other Llibraries

4

s # Define Classes (sprites) here

6

7 pygame.init() # Pygame is initialised (starts running)
8

s screen = pygame.display.set_mode([700,500]) #
10 pygame.display.set_caption("My Game™) # Name your window

11 done = False # Loop until the user clicks the close button.
1z clock = pygame.time.Clock() # Used to manage how fast the screen updates
#
#

Set the width and height of the screen [width, height]

13 black = 9, 9, 0) Define some colors using rgb values. These can be

1a white =.{ 255, 255, 255) used throughout the game instead of using rgb values.
15

16 # Define additional Functions and Procedures here

17

BH -------- Main Program Loop -----------

13 while done == False:

20

21 for event in pygame.event.get(): # Check for an event (mouse click, key press)
22 if event.type == pygame.QUIT: # If user clicked close window

23 done = True # Flag that we are done so we exit this Lloop
24

25 # Update sprites here

26

27 pygame.display.flip() # Go ahead and update the screen with what we've drawn.
28 clock.tick(20) # Limit to 20 frames per second

25

30 pygame.quit() # Close the window and quit.

Read the program comment lines carefully ‘asH : i . above file will be

Once running the program continually repeats the codcw i op’. Each time the
program checks for events like a key being pressed or th i . 1t will then execute

Once every object, attribute and value has been updated, the obj on the screen are redrawn and
sent (flipped) to the monitor. If this is done faster than the specifie ck tick the program will pause
before looping again. This effectively creates a frame rate for the game.

Remember the Frames Concept

The concept of Pygame code running as individual frames is very important. When programming in
Pygame constantly keep in mind that your code is generating the next frame image (or snapshot) of
your game.

Movement between frames will be relatively small. For example if you write code within the main
program loop to make a character jump into the air and fall again this entire action will take place in a
fraction of a second. When you run the code your character will look like they’ve not moved. Instead
think of how far your character will move up each frame, when will they stop and how fast will they
will fall again. If your whole jumping movement lasts 1.5 seconds and your game is running at 20fps
the screen will have been drawn 30 times during that process.

SDD 12

Advanced HigherProgramming

/Project 1 - Balloon Burst m

Project Outline

Description - The game will start in a landscape window of 800 by 400 pixels. Within the window
small balloons of different colours will appear at the left hand edge. The balloons will drift right and
then left across the window. The speed at which the balloons move will be matched with their colour.

Purpose - The user is required to move a dart round the screen with a mouse. They will click on the
balloons at which point they will burst and disappear. The user will gain points for each balloon they
burst. During the game blue balloons will appear which the user should avoid clicking on as the game
will end when a blue balloon is burst.

Objects, Attributes and Methods

The tables below are examples of UML (Unified Modelling Language) class diagrams, part of a
design methodology used in object orientated programming. top to bottom: class,
attributes and methods.

Balloon

Integer: Xcoordinate '
Integer: Ycoordinate

Integer: Speed

String: Direction
Integer: BalloonType
Integer: Score
Graphic: Balloonlmage

Constructor (XCoordinate,Y Coordinate,Direction,BalloonType)
Move Balloon ()

e T U —

Dart

Integer: Xcoordinate
Integer: Ycoordinate
Graphic: DartImage

Constructor (XCoordinate,Y Coordinate)
Move Dart (mouseX, mouseY)

Screen Design
Window width = 800

Balloons appear below 50 pixels

95
6
0

Window
height =
Balloons drift 400
O left and right
_ /

13

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HigherProgramming

/Coding Balloon Burst m

The Game Window

All PyGame projects should start with setting up your game window. For Balloon Burst we shall
create the window shown below with the following attributes:

e aresolution of 800 x 400
o window title - “Balloon Burst”

e a background image of the sky

@ Balloon Burst

R

[
r

- il
. - -
-.._-w-\. - \-

ake the changes shown below to the window setup. Note
that each time you are shown codethere will be re o the line numbers. These line numbers
will not match your file exactly. C@ncentrate of finding th€lcorrect place to add the new code and
ensure that you add every line required. T oroughly at each stage.

Open up the PyGame template file

1 # Basic Pygame Structure “

iimport pygame # Imports pygame and other
:# Define Classes (sprites) here

"}pygame.init() # Pygame is initialised (s
zscreen = pygame.display.set _mode([800,400]) # Set the width and height
10 pygame.display.set_caption("Balloon Burst") # Name your window

11 background_image = pygame.image.load("SkyBackground.png™).convert()
12 pygame.mouse.set visible(False)

13 done = False # Loop until the user clic
14 clock = pygame.time.Clock() # Used to manage how fast
15 black =(o, 0, 0) # Define some colors using
16 white = { 255, 255, 255) # used throughout the game

e edit the window resolution (line 9)
e cdit the window title (line 10)
e add code to load in the background image (line 11)

e add code to hide the mouse cursor while the game is running (line 12)

e create a new folder and save your file

SBD 14

Advanced HighegProgramming

/You’ve now used your first two Pygame library functions! m
pygame.display.set mode()

This creates a display Surface to a given resolution. A Surface is a Pygame object used to represent
images. Our code creates a new image object called “screen”.

pygame.image.load()

This function loads a new image from a file ("SkyBackground.png") and creates a new Surface. We
have assigned this image to the Surface “background”.

Note that the file name may be proceeded by a path name to the file.
must be stored in the same folder as your saved Balloon Burs
background graphic supplied by your teacher is copied into

s ours does not, the graphic

When you create your own games you will have to prepare
using a suitable graphic editing application and exporting the equire and in
a suitable standard file format.

The Blit Command
The blit command is used to draw one Surface ontqg inyprogram loop runs we will
use this command to create a single video fra 1 pjects onto the screen object.
e add the blit command to draw the “backg i a€e on top of the “screen” Surface
(line 30) _

20# -------- Main Program Loop -----------

21 while done == False:

22

23 for event in pygame.event.get(): # Check for an e

24 if event.type == pygame.QUIT: # If user clicke

25 done = True # Flag that we arn

26

27 # Update sprites here

28

29

30 screen.blit(background image, [0,0])

31 pygame.display.flip() # Go ahead and u

32 clock.tick(20) # Limit to 20 fr

33

34 pygame.quit() # Close the wind

0 800 The blit command contains coordinates which are
0 = used to position one image over the other.

The “screen” surface has a resolution of 800x400.

The “background image” also has a resolution of

800x400. To place one surface over another of the

same size we would position it using the

(520.300) coordinates [0,0]. We will use this technique later
@] to draw our balloons at specific coordinates.

o Run your program to test your game window.

~

15 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

/Creating the Balloons m
. . 5 # Define Classes (sprites) here

Time to create our first Ob_]eCt 6 class Balloon(pygame.sprite.Sprite):

using object orientated 7 o

progranlnlhng 8 def __init_ (self,x,y,direction,balloonType):

: E} pygame.sprite.Sprite.__init__ (self)

To create a Balloon Class add the *° 2 : ; :
11 self.Direction = direction

code below to the area of the 12 self.BalloonType = balloonType

template marked 13 I

« : » 14 if balloonType == 1:

Define Classes (sprltes) here”. 15 balloonImage = pygame.image.load("RedBalloon.png")

16 self.Speed = 3
17 self.Score = 5
18 if balloonType == 2:
19 balloonImage = pygame.image.load("YellowBalloon.png")
20 self.Speed = 7
21 self.Score = 15
22 if balloonType == 3:
23 balloonImage = pygame.image.load("GreenBalloon.png")
24 self.Speed = 5
25 self.Score = 10
26 if balloonType == 4:
27 balloonImage = pygame.image.load("BlueBalloon.png™)
28 self.Speed = 10
29 self.Score = @

30

31 self.image = pygame.Surface([26,50])

32 self.image.set_colorkey(black)

33 self.image.blit(balloonImage,(0,0))
34 self.rect = self.image.get rect()
35 self.rect.x = x

36 self.rect.y = y

Line 6 Here we declar class called on’. Note that class names always start with a
capital letter. This'€lass will inherit fibutes of a Pygame sprite (line 9).

Line 8 The constructor method def S instance of the Balloon class.
When we call this method :

o X,y - these will become the “screen” Surface.

2

o direction - whether the ballo@

o balloonType - this integer, with -4, will be control the colour of

balloon that is created.

Line 11 This line creates a class property called ‘Direttion’ ssigns it the value that was
passed into the init method.

Line 12 This creates a BalloonType property to store the type of balloon as an integer. The game
will have 4 types of balloon - red, blue, green and yellow.

Lines 14-29 Each type of balloon is assigned a different image, speed and score.

Line 31 A new Surface is created for the balloon object.

Line 32 The Colorkey() method is used to ensure that the transparent areas of the balloon png
image files are actually transparent.

Line 33 The chosen balloon image is copied onto the new Surface created in line 31.

Line 34 Pygame uses Rect objects to store and manipulate rectangular areas. This line creates a

new Rect object from our image created in the above three lines

Line 35-36 We can now assign the properties of the Rect object (rect.x and rect.y) to the x and y
coordinates that were passed into the init method. This has the effect of positioning the
Rect where we want it and can be used later to move our new Balloon object.

—
SDD 16

HigherProgramming

/To create instances of the Balloon class we now need to call the init method. Where we call instance m
methods in our code will determine how often objects are created.

By placing the call statement inside the main program loop we can continually create balloons while
the game is running.

BRE =uasacae Main Program Loop ----------- 1# Basic Pygame Structure

54 while done == False: 2

55 3 import pygame

56 for event in pygame.event.get(): # Check fd§ 4 import random

5% if event.type == pygame.QUIT: # If user

58 done = True # Flag th

59

60 # Update sprites here 0 X 809
61 yCoord = random.randint(50,350) 0

62 balloonType = random.randint(1,4) —30

63 balloon = Balloon(0,yCoord,"right”,balloonType) Balloons will appear
64 between these two
65 screen.blit(background image, [0,0]) points.

66 pygame.display.flip() # Go ahea

67 clock.tick(20) # Limit t

d — 350

69 pygame.quit() N

e create a new instance called ‘balloon’ i on. Note the actual properties

b

we’ve given the new object are pass ¢ create the object:
- an x coordinate of § starts at the left hand edge of the screen

No Balloons Appearing

If you run the program you sho ¢ that it executes without crashing but no balloons appear. This
is because we have not yet drawm'the objects on the display surface. This must happen once during
each repetition of the main program loop.

In a game there are always events that occur multiple times. In Balloon Burst this includes:
1. checking to see if the user has clicked on each balloon in turn

2. checking each balloon to see if it has touched the edge of the window and must therefore
change direction

3. moving every balloon left or right
4. checking to see if the user has clicked on any blue balloon, which would end the game
5. drawing each balloon in turn on the window’s surface

To simplify the handing of these events Pygame allows objects to be grouped together. These groups
can then be used to handle the above multiple events, for example, drawing the balloons.

—

17 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

-

Designing groups is an important part of programming in Pygame. The simplicity with which you will
be able to handle your game objects will depend on the skill with which you design/create groups of
objects. Objects in Pygame programs can be added/removed from groups or copied from one group to
another.

In Balloon Burst we will create three groups as shown in the diagram below:

Each new instance of a balloon will be added to 2 of the above groups:

e cither ‘otherBalloons’ or ‘blueBalloons’ depending on the balloonType generated

e allBalloons

allBalloons

blueBalloons

Three groups will allow our program code to:

e move every balloon - ‘allBalloons’

b

check to see if any balloon has reached the left or right hand edge of the window - “allBalloons

check to see if the user has clicked on a red, yellow or green balloon - ‘otherBalloons’

check to see if the user has ended the game by clicking a blue balloon - ‘blueBalloons’

draw all the balloons on the display surface - ‘allBalloons’

SDD

Creating Groups m

Advanced HigherProgramming

/The following code shows how groups can be used to draw the Balloon objects. m
48 black =(o, o, 0) # Def
49 white = (255, 255, 255) # use
50

e add lines 51 to 53, in the
position shown, to create the
three groups

51 otherBalloons = pygame.sprite.Group()

52 blueBalloons = pygame.sprite.Group()

53 allBalloons = pygame.sprite.Group()

54

55 # Define additional Functions and Procedures here
56

Now add the following code inside €4 # Update sprites here
the main program loop. 65 yCoord = random.randint(50,350)
L) 66 balloonType = random.randint(1,4)
e By adding lines 68-71 and using ¢ balloon = Balloon(®,yCoord,"right"”,balloonType)

a simpl.e selec.tion w¢e can 68 if balloonType >=1 and balloonType <=3:
determine which of two groups 69 otherBalloons.add(balloon)
the Balloon objects are added to. 70 else:

71 blueBalloons.add(balloon)

e Adding line 72 ensures that

every balloon created is added to ;2 alilialioonssandibaliood)
the “allBalloons” group. 74 screen.blit(background image, [0,0])
e We can then draw every Balloon 75 allBalloons.draw(screen)
on the display surface using line 7€
75. 13 pygame.display.flip() # Go ah

clock.tick(20) # Limit

e Create a game window
sized at 800x400 pixels.

e Display a background
image in the window

e Hide the mouse cursor
when it is over the
window

e Create multiple balloons
on the left hand edge of
the window (note - the
balloons do not move

yet)

If your code doesn’t execute any of the above, work your way back through the booklet to find what
you’ve missed or typed incorrectly.

—

19 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming
P

Timing the Creation of Balloons m

The last line of the main program loop ensures that the Balloon Burst

is running at 20 frames per second. As instances of our Balloon 78 clock.tick(20) |
objects are being created inside the main loop this means that our
balloons are being created at a rate of 20 per second.

If our game is to be playable we need to slow the balloon generation down and also introduce some
random element as to how fast the balloons are being created. To do this we will use the same clock
used to control the frame rate.

When Pygame is initialised using the line below a clock starts ticking/counting from 0 in milliseconds.

40 pygame.init() |

To create balloon obj 3 int€tvals we require a variable to control when the balloons are
released.

balloon created at
value was randomly gt

I|I|I|I|I|I

||||1|T||||||||1||||||

oo 2000 Booo b Sow G Tooo 8o OGoe T fime

milliseconds

53 allBalloons = pygame.sprite.Group()

54

55 timeTillNextBalloon = random.randint(1000,2000)
56

57 # Define additional Functions and Procedures here

This can be programmed by:
e initialising the timeTillNextBalloon variable (line 5

e placing our balloon generation code inside a selection stateme
after the current time (pygame.time.get.tick()) is greater than

ensure the code is only executed
eTilINextBalloon (line 67)

e incrementing the timeTilINextBalloon variable by a random value (line 68)

66 # Update sprites here

67 if pygame.time.get ticks() > timeTillNextBalloon:
68 timeTillNextBalloon += random.randint(300,2500)
69 yCoord = random.randint(50,350)

70 balloonType = random.randint(1,4)

71 balloon = Balloon(@,yCoord,"right"”,balloonType)
72 if balloonType >=1 and balloonType <=3:

73 otherBalloons.add(balloon)

74 else:

75 blueBalloons.add(balloon)

76 allBalloons.add(balloon)

77

78 screen.blit(background image, [0,0])

79 allBalloons.draw(screen)

SDD 20

HigherProgramming

Making the Balloons Move m

To move the balloons we have to update their position on the screen, currently stored using rect.x and
rect.y.

-

e To move the Balloon objects to the right we will increment the rect.x property of each balloon by
its Speed property.

e To move the Balloon objects to the left we will decrement the rect.x property of each balloon by its
Speed property.

Changing the value of multiple object’s properties is usually accomplished using a method. Remember a
method is a function attached to a class.

e add the moveBalloons() method shown below to the Balloon class

e add lines 85 and 86 to call the moveBalloons() method fo oongebject in the allBalloons
group

36 self.rect.x = x

37 self.rect.y = y

38

39 def moveBalloons(self):

40

41 if self.Direction == "right":

42 self.rect.x += self.Speed ‘

43 if self.Direction == "left": 81 blueBalloons.add(balloon)
- self.rect.x -= self.Speed 82 allBalloons.add(balloon)
83

84 # Move each balloon in the allBalloons group
85 for balloon in (allBalloons.sprites()):

86 balloon.moveBalloons()

87

CE: screen.blit(background image, [0,0])

89 allBalloons.draw(screen)

y

When you rugfthe 1lloons move nicely across the window but do not stop

e add lines 85-89 to ch@ ition®f each Balloon object in the window. If the rect.x property is
irectidn property of the Balloon will be changed.

84 # Chec§ if balloon sprites have reached edge of screen
85 for balloon in (allBalloons.sprites()):

86 if balloon.rect.x < @:

87 balloon.Direction = "right"

88 if balloon.rect.x > 774:

89 balloon.Direction = "left"”

90

91 # Move each balloon in the allBalloons group

92 for balloon in (allBalloons.sprites()):

93 balloon.moveBalloons()

T EEEEE—

Note that the balloons’ movement right (line 88) has been limited to 774 and not 800. This is because
the balloon graphics are 26 pixels wide. Since rect.x and rect.y note the top, left hand edge of the
graphic we have to allow for the width of the graphic in our code.

Try changing the right hand limit to 800 and observe the difference when the code runs.

\\II"

21 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

adyanced HighegBrogramming

/The Player’s Dart m

To pop the balloons the user will be given a small dart | ,-:-.-‘ which they can move around the game
window with their mouse.

To create the dart we will need another class (with its own init method) and a single instance of that
class.

39 def moveBalloons(self):

40

41 if self.Direction == "right":

42 self.rect.x += self.Speed

43 if self.Direction == "left":

44 self.rect.x -= self.Speed

45

46 class Dart(pygame.sprite.Sprite):

47

48 def __init_ (self):

49 pygame.sprite.Sprite.__init__ (self)
50 dartImage = pygame.image.load("Dart.png")
51 self.image = pygame.Surface([24,19])
52 self.image.set _colorkey(black)

53 self.image.blit(dartImage,(0,0))

54 self.rect = self.image.get rect()

55 self.rect.x = 388

56 self.rect.y = 190

53

58 pygame.init()

e add line 46 to declare the new ¢

e add lines 48 to 56. Note that
equivalent. We are only require

constructor nction is much simpler than our Balloon
single i and thg® & y coordinates of the sprite.

To create a single instance of the dart object we before the main program loop.

e add the lines 75 to 77 below to create an instance Qf t and add 1 S own group

73 timeTillNextBalloon = random.randint(1000,2000)
74

75 dart = Dart()

76 darts = pygame.sprite.Group()

77 darts.add(dart)

78

79 # Define additional Functions and Procedures here

Remember that to see the dart we must

113 screen.blit(background image, [0,0])
adq a draw command at the bottom of the 112 al1Balloons.draw(screen)
main program loop. 113 darts.draw(screen)
e add line 113 to draw the dart

Again the order of the draw commands is important. By placing darts.draw(screen) after
allBalloons.draw(screen) the dart will appear to be in front of the balloons.

SDD 22

Advanced HighegProgramming

To move the dart with the mouse we have to use the events section of the main program loop. m

During execution of Pygame code the program stores mouse movements, mouse clicks, keyboard presses
and joystick movements in an event queue. Each time the main program loop is executed it begins by
checking for events in the queue.

The initial Pygame template included lines 84 to 86 below. These lines check the event queue to see if
the user has closed the window. The boolean variable done is used to end the main program loop.
Leaving the main program loop would cause the program’s execution to finish.

BL# -------- Main Program Loop -----------

82 while done == False:

83

84 for event in pygame.event.get(): # Check f
85 if event.type == pygame.QUIT: # If user
86 done = True # Flag th
87

88 if event.type == pygame.MOUSEMOTION:

89 mousePosition[:] = list(event.pos)

90 dart.moveDart(mousePosition)

91

¢ add line 88 above to check the event queue for afmouse

e add line 89. This copies the x and y
coordinates of the mouse from the
event queue into an array of two valu
called mouseposition]].

77 timeTillNextBalloon = random.randint(1000,2000)
78 mousePosition = [0]*2

remember to add li

46 class Dart(pygame.sprite.Sprite):

47

48 def __init_ (self):

49 pygame.sprite.Sprite.__init__(self)
50 dartImage = pygame.image.load("Dart.png")
51 self.image = pygame.Surface([24,19])
52 self.image.set_colorkey(black)

53 self.image.blit(dartImage,(0,0))

54 self.rect = self.image.get rect()

55 self.rect.x = 388

56 self.rect.y = 190

57

58 def moveDart(self,mousePosition):

59 self.rect.x = mousePosition[@]

60 self.rect.y = mousePosition[1]

The moveDart method simply takes the coordinates of the mouse and assigns them to the rect.x and
rect.y properties of the Dart object. As this method is called every time the user moves the mouse this
has the effect of making the dart follow the mouse.

—

23 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

/Bursting Balloons and Keeping Score m

As discussed several times already Pygame programs reply on the use of sprites, groups and the
interactions between them. We can sense when two groups collide by using the command below.

pygame.sprite.groupcollide(groupl,group2,False, False)

The boolean values at the end are used to kill any sprites from either group that have collided. The
ability to delete (kill) an object is one of the defining attributes of object orientated programming.

The code below senses a mouse click event and deletes any balloons that are touching the dart at that
time. The code updates the ss)re or ends the game depending on the type of balloon that was clicked.

97 if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1:
98 hitBalloons = pygame.sprite.groupcollide(blueBalloons,darts,False, False)
99 if len(hitBalloons) > 0:
100 done = True
101 hitBalloons = pygame.sprite.groupcollide(otherBalloons,darts,False, False)
102 for balloon in (hitBalloons):
103 score += balloon.Score
104 pygame.sprite.spritecollide(dart,allBalloons, True, collided = None)

e add a new MO
event.button == 1

t (line 97) below the MOUSEMOTION event. Note that

objects are killed they are deleted from every gro

allBalloons).
e remember to declare the score 77 timeTillNextBalloon = random.randint(1000,2000)
variable (used in line 103), 78 mousePosition = [0]*2
shown below in line 79 79 score = 0
Displaying the Score

To display text Pygame creates an image of the text which is then blitted to the screen display at given
coordinates. The code for this is shown below.

69 clock = pygame.time.Clock()

;2 Etlljiz = E zsgj 252: 252; 133 screen.blit(background_image, [0,0])
72 font = pygame.font.Font(None, 36) 1 allBalloons.draw(screen)
135 darts.draw(screen)
136 # Add the score to the screen
® add lines 72, 137 and 138 as 137 textImg = font.render(str(score),1,white)
shown below. 138 screen.blit(textImg, (10,10))

—
SDD 24

Advanced Highep Programming

/Adding a Pop Sound m
Any good game has sound so it would be good if we added a popping sound to our game when we burst
a balloon.

As with graphic files a sound is created as an object using the Pygame module library functions.

72 font = pygame.font.Font(None, 36)

73

74 popSound = pygame.mixer.Sound(“pop.wav")
75

76 otherBalloons = pygame.sprite.Group()

* add line 74. You will need to have the sound stored in the same folder as your Python file.

¢ add line 108 below. The positioning of the line the plays the sound is important. Using the loop

below (line 106) makes sense as here the code loops through a list of Balloons objects that have been
P! VtBalloons list.

hit. Adding a sound here will play the pop sound for eac

101 if event.type == pygame.MOUSEBUTTONDOWN and event.button ==

102 hitBalloons = pygame.sprite.groupcollide(blueBalloons,darts,False, False)
103 if len(hitBalloons) > 0:

104 done = True

108 hitBalloons = pygame.sprite.groupcollide(otherBalloons,darts,False, False)
106 for balloon in (hitBalloons):

107 score += balloon.Score

108 popSound.play()

109 pygame.sprite.spritecollide(dart,allBalloons, True, collided = None)

Try double clicking on t

Balloon Burst Cha

Try implementing the follo
difficulty.

own. The suggestions below are listed in increasing order of

1. When creating an instang€ of a balloon make the Balloon objects appear at a random speed.

2. Add afew bonus objects that exhibit the same behaviour as the balloons. These should move
faster but have a higher score associated with them.

Add a special gold balloon that will kill all the blue balloons when clicked.
Make the balloons drift slightly up and down as they move across the game window.
Add text to each balloon so that each balloon displays its value in the middle. .

Add a ‘game over’ screen to display the final score for 5 seconds.

N e @ s e

Add an initial screen that allows the user to set the difficulty: easy, medium or hard. The users
choice should determine the speed of the balloons and how often they appear.

N~

25 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

Advanced HighegProgramming

(MyFi AH
My First Pygame

Following instructions and explanations like those in the previous pages is a good way to learn but as a

programmer you must be able to work and problem solve independently.

After each of the four projects there will be an expectation that you create a similar program of your own
that uses the concepts you have learned in the previous project. Pygame concepts covered up to this
point have included:

e understanding the structure of a Pygame program

e creating a Class (including sprites)

e using the constructor method init

e creating an instance of an object

¢ adding images to Surfaces

¢ bliting one Surface onto another Surface

e moving objects using the sprite rect.x and rect.y properties
¢ using the clock to control events

e cvents - sensing mouse movement and mouse clicks
e creating lists of objects that have collided

e killing objects following collisions

e bliting text to the screen surface

e using the done variable to end the game

Now is your chance to create a
approach to design and planning.

projects we will discuss a more formal
of stages to follow is detailed below.

of your own. :
now a suggested ord

1. On paper draw out a basic design for a
2. Create a UML class diagram to note the h object in your game.

3. Devise a plan of attack by listing the order i
the game.

implement the different parts of

4. Write your code.
5. Test your game yourself.
6. Ask others to verbally evaluate your game for: ease of use, p ility, overall look and enjoyment.

For reference, make use of the Documentation section of the Pyga ebsite. Don’t be afraid to teach

yourself in addition to using what you learned in project 1.

Pygame Home || Help Contents || Reference Index

m BufferProxy | camera | cdrom | Color | cursors | display | draw | event | examples | font | freetype |
afxdraw | image | joystick | key | locals | mask | math | midi | mixer | mouse | movie | music |
pygame documentation Overlay | PixelArray | pixelcopy | pygame | Rect | scrap | sndarray | sprite | Surface | surfarray |
lests | time | transform | version

pygame.sprite
pygame.sprite

pygame module with basic game object classes
i I — Simple base class for visible game objects.

pygame sprite DirtySprite — A subclass of Sprite with more attributes and features.
pygame sprite Group — A container class to hold and manage multiple Sprite objects
pygame sprite RenderPlain — Same as pygame sprite Group

pygame sprite RenderClear — Same as pygame.sprite. Group

— R R R AL LG B b S Bl 2t D bR G D 21

Advanced Higher Programming

/Designjng Better Classes (Mistakes made in Balloon Burst) m

They say that if you ask 20 programmers to solve the same problem, you’ll end up with 20 different
programs. So what makes one program better than another?

As this was your introduction to Pygame programming (and maybe your first experience of object
orientated programming) the code in balloon burst was simplified to the point that it would be described
by an expert as “poorly structured”.

To explain...
class Balloon(pygame.sprite.Sprite): Discussion POint 1
def __init_ (self,x,y,direction,balloonType): . .
pygame.sprite.Sprite.__init__(self) One important rule of object orientated
B — Brogrammlng, broken in Balloon Burst, is that
self.BalloonType = balloonType properties and behaviours should remain

2

separate within Classes”.

if balloonType == 1:
balloonImage = pygame.image.load("RedBalloon.png™)
self.Speed
self.Score
if balloonType
balloonImage
self.Speed
self.Score
if balloonType
balloonImage
self.Speed
self.Score
if balloonType
balloonImage
self.Speed
self.Score

method, code has been

3
5 erties for 4 different types

pygame.image.load("YellowBalloon.png™)

i nn

pygame.image.load("GreenBalloon.png™)

nouwn

= pygame.image.load("BlueBalloon.png")
= 19
=0
self.image = pygame.Surface([26,50])
self.image.set_colorkey(black)
self.image.blit(balloonImage, (0,0))
self.rect = self.image.get_rect()
self.rect.x
self.rect.y

class Balloon(pygame.sprite.Sprite):

) def __init_ (sel$):

te.Sprite.__init__ (self)

.image = pygame.Surface([26,50])

This issue may bg
y .rect = self.image.get rect()

method that s .rect.x = 0

g self.rect.y = ©
PJijaranneters are p cobE dirottion = ™"
creating an instance of \ self.type= 0

self.speed = 0

information on how it is to't
self.score = 0

The object can then be given va def setBalloon(self,x,y,d,t):

e values = {
for pO‘Sltlon‘, SPeed’ score and 1:{"img": 'RedBalloon.png’, speed’':3,"score':5, 'direction’: 'right’},
direction within a separate metHod. 2:{'img":'YellowBalloon.png', 'speed':7, 'score’:15, ‘direction’: ‘right'},
. . 3:{"img':'GreenBalloon.png’, 'speed':5, "score’:10, 'direction’: 'right'},
Parameters are passed mto thlS 4:{"img":'BlueBalloon.png’, 'speed’:1@, 'score’:0, 'direction’: 'right"}

second method.

self.rect.x = x

0 0 0 1f. t.y =
It is only at this point that the P
behaviour of the object is now self.direction = d
defined. attrs = values[self.type]
This new method could be called sei:-scor‘s = Jacitr;.[l"‘-f :..-\(“‘;]

.. . . self.speed= attrs["“speed

again in future if we wished to
change the behaviour of a Balloon balloonImage = pygame.image.load(attrs["img"])

i self.image.set_colorkey(black)
Oll]eCt. self.image.blit(balloonImage, (9,0))

T —
The two methods would be called as shown below.

balloon = Balloon()
balloon.setBalloon(0,yCoord, “right", balloonType)l

27

Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

S

/Discussion Point 2 m

The lack of efficient organisation of the attributes assigned to each type of balloon is also an issue within
program code. There is in fact no organisation of this data at all as the values are simply assigned within
the constructor class.

if balloonType == 1:
balloonImage = pygame.image.load("RedBalloon.png")
self.Speed = 3
self.Score
if balloonType == 2:
balloonImage = pygame.image.load("YellowBalloon.png")
self.Speed = 7
self.Score = 15
if balloonType == 3:
balloonImage = pygame.image.load("GreenBalloon.png")
self.Speed = 5
self.Score = 10
if balloonType == 4:
balloonImage = pygame.image.load("BlueBalloon.png™)
self.Speed = 10
self.Score

]
i

If more ball
to be written.

me new code (in the form of selection statements) would have

es were added to t
i s more balloons should simply lead to more stored data and

1S poor program

We could use arrays to for speed, image, score and direction but, as we learned
ingle object being stored in multiple data structures.

A better solution is to use a record ture. This structure stores data in organised records, each of
which can contain multiple data . A python cture to store our balloon values is shown
below.

values = {
1:{"'img': 'RedBalloon.png’, 'speed':3,"'score':5, 'direction': 'right'},
2:{"'img": 'YellowBalloon.png', 'speed':7,"'score’:15, 'direction': "right'},
3:{"img": 'GreenBalloon.png’, 'speed’: S,'score' 19, "dir Prtion':'right'},
4:{'img':'BlueBalloon.png', 'speed':10, 'score’:0, 'direction’: 'right'}
)
The name ‘record’ structure is no coincidence as the da cture bea ies to a database with
its tables, records and fields.
The data is access by copying a record from the table. attrs = values[self.type]
For a balloon type of 2, attrs would now store:

'img":'YellowBalloon.png','speed":7,'score’: 15,'direction':'right'

The different values in the record are then accessed as self.score = attrs["score"]

shown on the right. self.speed= attrs["speed”]

If an additional type of Balloon object is required we now simply add another line to the record structure
without altering any other code.

5:{'img':'GoldBalloon.png','speed':25,'score':1000,'direction':'right'}l

D

Advanced HighepProgramming

/Discussion Point 3 m

A third improvement that could be made to Balloon Burst is increased used of use of methods.

An example of this is where the game checks each balloon to see if it has reached the edge of the game
window. As this section of code changes the behaviour of an object (direction is changed between
‘right” and ‘left’ as required) this should be handled by a method.

Check 1if balloon sprites have reached edge of screen
for balloon in (allBalloons.sprites()):
if balloon.rect.x < 0:

balloon.Direction = "right”
if balloon.rect.x > 774:
balloon.Direction = "left"
bec%mes C K
/\ .
Check if balloon sprites have reached def checkForEdge(self):
for balloon in (allBalloons.sprites()): d if self.rect.x < O:
balloon.checkForEdge() an self.direction = "right"
if self.rect.x > 774:

self.direction = "left"

The additional method within the Balloon CI
objects can only be altered within the class.

rection properties of the Balloon

Discussion Point 4

Within the main pr
teaching the pu

am loop the co
of each part of the

rough each balloon object twice. While
code in turn it made sense to do this.

Check if balloon sprites have reached edge of screen
for balloon in (allBalloons.sprites()):
balloon.checkForEdge()

Move each balloon in the allBalloons group
for balloon in (allBalloons.sprites()):
balloon.moveBalloon()

Now that the code is complete this stands out as a glaring inefficiency. The above code can be rewritten
as a single loop in which each balloon’s position is checked (checkForEdge())and then updated
(moveBalloon ()).
Check if balloon near at edge and update position
for balloon in (allBalloons.sprites()):
balloon.checkForEdge()
balloon.moveBalloon()

Booklet 2

In booklet 2 we will look at inheritance, encapsulation, sprite animation and file handing.

—

29 Copyright Mr G. Reid, Buckhaven High School & Mr D. Stott, Kirkland High School and Community College - April 2015

