
 learn
 computing
 with the
 micro:bit

Rob Leeman

 micro:course

Such information and materials are protected by intellectual
property rights around the world and are copyright © Arm
Limited (or its affiliates). All rights are reserved. Any source code,
models or other materials set out in this reference book should
only be used for non-commercial, educational purposes (and/or
subject to the terms of any license that is specified or otherwise
provided by Arm). In no event shall purchasing this textbook be
construed as granting a license to use any other Arm technology
or know-how.

The Arm corporate logo and words marked with ® or ™
are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights
reserved. micro:bit is a trademark of the Micro:bit Educational
Foundation. Other brands and names mentioned in this
document may be the trademarks of their respective owners.
For more information about Arm’s trademarks, please visit
https://www.arm.com/company/policies/trademarks.

Arm is committed to making the language we use inclusive,
meaningful, and respectful. Our goal is to remove and replace
non-inclusive language from our vocabulary to reflect our values
and represent our global ecosystem.

Arm is working actively with our partners, standards bodies,
and the wider ecosystem to adopt a consistent approach to the
use of inclusive language and to eradicate and replace offensive
terms. We recognize that this will take time. This book may
contain references to non-inclusive language; it will be updated
with newer terms as those terms are agreed and ratified with
the wider community.

Contact us at school@arm.com with questions or comments
about this course. You can also report non-inclusive and
offensive terminology usage in Arm content at terms@arm.com.

ISBN: 978-1-911531-45-6

For information on all Arm Education Media publications, visit
our website at
https://school.arm.com

To report errors or send feedback, please email
school@arm.com

Arm Education Media is an imprint of Arm Limited, 110 Fulbourn
Road, Cambridge, CB1 9NJ, UK

Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including
photocopying, recording or any other information storage
and retrieval system, without permission in writing from the
publisher, except under the following conditions:

Permissions

 You may download this book in PDF format from the
Arm.com website for personal, non-commercial use only.

 You may reprint or republish portions of the text for non-
commercial, educational or research purposes but only if
there is an attribution to Arm Education.

This book and the individual contributions contained in it are
protected under copyright by the Publisher (other than as may
be noted herein).

Notices
Knowledge and best practice in this field are constantly
changing. As new research and experience broaden our
understanding, changes in research methods and professional
practices may become necessary.

Readers must always rely on their own experience and
knowledge in evaluating and using any information, methods,
project work, or experiments described herein. In using such
information or methods, they should be mindful of their safety
and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent permitted by law, the publisher and
the authors, contributors, and editors shall not have any
responsibility or liability for any losses, liabilities, claims,
damages, costs or expenses resulting from or suffered in
connection with the use of the information and materials set out
in this textbook.

2    Arm School Program

https://www.arm.com/company/policies/trademarks
mailto:school@arm.com
mailto:terms@arm.com
https://school.arm.com
mailto:school@arm.com
http://www.arm.com

 CONTENTS

Projects

Quickstart� 8

Multiplication�Revision�App� 12

Temperature�Sensor� 16

Micro:pet�V2� 20

Rock�Paper�Scissors� 28

Smart�Cities� 36

Tree�Protector� 42

Introduction�to�Data�Logging� 46

Ocean�Health�Monitor� 56

Getting�Started 5

3

Auto-farmer� 61

Oil�Spill�Cleaner�Upper� 67

Treasure�Hunt� 73

MicroPython

Getting�Started�with�MicroPython� 78

Quickstart�MicroPython� 79

Multiplication�Revision�App�2.0�with�MicroPython� 85

Appendix�

Blank�micro:pet�Net� 91

MicroPython�Design�Sheet� 92

Other�ASP�Products 93

4 Contents    Arm School Program

 GETTING STARTED
This�book�introduces�learners�to�the�world�of�making�and�programming�through�
a�series�of�real-world�challenges�that�feature�the�micro:bit.

Learners study the building blocks of Computer Science in a practical and engaging way by
making real-world products and solving real-world problems using code. Learners start using a
“block-based” language called MakeCode to learn the fundamental concepts of Computer Science
whilst applying them to the physical world. Learners then move on to using Python, a text-based
programming language, and explore more advanced features of the micro:bit.

Accompanying lesson plans and a digital version of this book can be downloaded from
https://school.arm.com�

Understanding�the�micro:bit
Learners often struggle to conceptualize what the micro:bit is and what it is for. It is important to
ensure learners understand that a micro:bit can sense, control and react to the real world in many
ways. Learners’ creations don’t need to be complex and the making part of the process is as much
fun as the coding part. Some projects will only have a sensor and an output (like a traffic counter),
while others will have more complex programs (like a remote-controlled robot). The beauty of
the micro:bit is its versatility and simplicity. The key to unlocking the power of the micro:bit is
understanding the blocks (code) that micro:bit uses and learning how to combine the blocks to solve
problems in creative ways. Much can be learned through play and experimentation, but learners
progress faster if there is a challenge to overcome or a problem to be solved.

The�hardware—Version�1�and�Version�2
There are now two versions of the micro:bit, the original micro:bit (V1) and the new micro:bit (V2).
They look very similar, but the new micro:bit has some new features and hardware that make it
even better and allow you to do more with it. You can find all the technical details on the micro:bit
website: https://microbit.org/get-started/user-guide/overview/

5

https://school.arm.com
https://microbit.org/get-started/user-guide/overview/

The�new�micro:bit�(V2)
The new micro:bit is packed with new features:

The�original�micro:bit�(V1)

Microphone�indicator Radio�antenna Microphone

Touch�logo

Reset�button

Reset�button

Speaker

The most obvious way to tell which micro:bit version you have is by looking at the pins. The new
micro:bit has notches that help keep crocodile clips attached and prevent them touching the other
pins by accident when moved.

The most interesting new features are the built-in speaker and microphone. These remove the need
for headphones when playing with the music blocks and allow the use of sound input as well as
sound output. There is also an additional button in the form of a touch-sensitive logo on the front.
These new features also come with some new blocks in MakeCode.

USB�connector

25�LED�lights

2�buttons

Pin-0 Pin-1 Pin-2 Pin-3V
Pin-Ground Compass�and�accelerometer

Edge�connector�for�accessories

Battery�
socket

Processor

USB�connector

25�LED�lights

2�buttons

Pin-0 Pin-1 Pin-2 Pin-3V
Pin-Ground Compass�and�accelerometer

Edge�connector�for�accessories

Battery�
socket

Processor

6 Getting Started    Arm School Program

The�interface
The MakeCode website lets you program your micro:bit
using a block-based programming language. These
blocks do everything a “proper” programming language
does, but they allow you to program visually without
worrying about the syntax. You can also program your
micro:bit using JavaScript or Python if you want to.

Some blocks, such as the microphone blocks, will only
work on the new (V2) micro:bit, but these are clearly
labelled. All other blocks will work on both versions.

You can also add additional packages that give you
more blocks to play with—more on this later.

Python

on start forever

Search...

Blocks

Download

Basic

Input

Music

Led

Radio

Loops

Logic

Variables

Math

Advanced

microcourse

Simulator�and�physical�micro:bit
The MakeCode website has a built-in simulator that means you don’t actually need a physical
micro:bit to learn how to use them. This is great for learners, as they can rapidly prototype their
ideas and bugfix their code quickly. It removes the need to download the .hex files constantly and
flash the micro:bit to see how the changes in code make the micro:bit behave.

Solutions
The .hex and .py solutions to all the projects found in this book are available in our GitHub
repository: github.com/arm-university.

PRO TIP
If�your�V1�micro:bit�is�very�old,�you�may�
need�to�flash�it�as�it�could�need�new�
firmware�to�work�correctly.�Detailed�
instructions�are�available�here:�

https://microbit.org/get-started/
user-guide/firmware/

7

https://github.com/arm-university
https://microbit.org/get-started/user-guide/firmware/
https://microbit.org/get-started/user-guide/firmware/

1
Log into your computer and go to
https://makecode.microbit.org

Click the Basic tools and drag across the
on start and the show string blocks as below

2
Change the text from Hello! to something else (maybe your name)

toshow string "Hello!" show string "Micro:bit"

on start on start

3
Congratulations!
You have created your first program for the micro:bit. Your program
will be “simulated” for you so you can see what the output will be:

Search...

more

Basic

Basic

Input

Music

Led

Radio

Loops

Logic

Variables

Math

show number

show leds

show icon

show string

forever

pause (ms)

0

"Hello!"

100

show string

on start

"Hello!"

8

micro:
project

Quickstart   Arm School Program

Success�criteria
 Create a simple program using MakeCode

 Download the program and upload it to
the micro:bit

 QUICKSTART
Setting�the�scene
In this introductory project we will learn
about the basic functionality of the
micro:bit and how to program it.

https://makecode.microbit.org

Download

4
First you must give your program a name.

Download download test

5
You now need to put your program on your micro:bit.
To do this we must Download the .hex file and copy/paste
it into the micro:bit.

Click the Download button

6
You will see this dialogue:

Download�completed…

Move the .hex file to MICROBIT drive to transfer the code into your micro:bit.

microbit-download-test.hex Help Done!?

7
If you look in your Download folder you should find your .hex file.
If not, it will be whatever the default download folder has been set to.

Download

Home Share

This PC Downloads

Name

microbit-download-test.hex

ViewFile

8
If you haven’t already done so you will need to connect
your micro:bit to your computer using a micro USB cable.

9

9
Your micro:bit should appear as a removable drive in your file system.

This PC

MICROBIT (D:)

Network

You now need to Copy�(Ctrl + C) the .hex file from
your Download folder into the micro:bit.

This PC

MICROBIT (D:)

Network

10
You can drag and drop or copy and paste the .hex�file into the MICROBIT folder.
There are some files already on the micro:bit but don’t worry about these.

Download

Home Share

MICROBIT (D:)

Name Date modified

1/22/2020/3:30 PM

Type

Text Document

Size

1 KB

1/22/2020/3:30 PM Chrome HTML Doc… 1 KB

DETAILS

MICROBIT

ViewFile

11
When you drag the .hex file into the micro:bit you will see a progress
window. The orange lights on the back of the micro:bit will flash
rapidly while uploading is in progress.

0% complete

Copying�1�item�from�Download�to�MICROBIT�(D:)

0% complete

More details

Once the file has transferred the micro:bit window will close
and your program will run on the micro:bit.

Cut
Copy
Paste
Delete

PRO TIP
You�can�sync�your�micro:bit�with�

MakeCode�using�WebUSB.�This�means�
you�can�just�click�“Download”�to�get�
your�code�on�your�micro:bit.�You�should�
get�a�prompt�in�MakeCode�that�will�
guide�you�through�the�process.�
https://microbit.org/get-started/

user-guide/web-usb/

10 Quickstart   Arm School Program

https://microbit.org/get-started/user-guide/web-usb/
https://microbit.org/get-started/user-guide/web-usb/

Stretch�tasks
 Why did the text only appear once? Make the text appear forever.

 Make a program that displays one of the icons.

 Make your own icon using the show leds block.

 Make a program that counts down from 5 seconds to 1 seconds and then displays a smiley
face for 5 seconds.

 Click the Input menu under the Basic blocks menu and then the�...more icon for more
blocks (most of the blocks have more options).

Search...

more

Basic

more

Input

clear screen

show arrow North

Final�thoughts
You have just learned how to:

 Create basic programs using MakeCode

 Name and save your program

 Upload your program to your micro:bit

 Extend your program

 Access more blocks

These are the essential skills for using a micro:bit. You will be doing this a lot in this course!

11

1
Open https://makecode.microbit.org

The first thing to consider here is how the program
will be used. The success criteria requires a simple
interface so we need to have some very simple
instructions when the program first runs. As the A and
B buttons are either side of the LEDs we will program
button A to give the question (Q) and button B give
the answer (A) and show this with a simple arrow:

2
We now need to program button A. The success criteria
requires the numbers to be generated randomly so we will
need to use a variable.

3
Variables
A variable is a container for a value, like a number we
might use in a sum, or a string (text) that we might use
as part of a sentence. One special thing about variables
is that their contained values can change.

A->

<-Q

show string "<-Q A->"

on start

12

micro:
project

Multiplication Revision App   Arm School Program

Success�criteria
 Has a simple interface when the
program starts

 Pressing a button gives a random
multiplication problem using numbers
between 1 and 10

 Pressing another button gives the answer

Setting�the�scene
In this project we will make a program
that gives simple maths problems and also
the answers when needed to help young
students practice their times tables.

 MULTIPLICATION
 REVISION APP

https://makecode.microbit.org

4
We need to create two variables to store the two numbers needed for a
multiplication problem:

To create a variable you need to open the ‘Variables’ menu

Variables

in MakeCode and select “Make�a�Variable”

Variables

Make�a�Variable…

this will open a menu to name the variable:

New�variable�name:

CancelOk

In this example we have named the variables int1 and
int2. Int is short for integer which is a computing/math
word for whole number.

Once you have created the two variables they will appear
in the Variables menu to be used within other blocks.

Search...

Basic

Input

Music

Led

Radio

Loops

Logic

Variables

Make�a�Variable…

Variables

int1

int2

set to 0int2

change by 1int2

PRO TIP
�Name�your�variables�wisely!�A�good�

variable�name�describes�what�it�is�for�or�
what�it�contains.�Variable�names�should�
be�lowercase,�with�words�separated�by�
underscores�to�improve�readability.

my_first_variable is�better�
than�My1stVar

int1

13

5
Now you need to use an on button A pressed block and
inside that put a set to block for both int1 and int2 and
then attach a pick random number from the Math blocks.
Now change the number from 4 to 10 in the pick random block.

set

on button pressedA

to pick random to0 10

set to pick random to0 10int2

int1

6
This will now set the two variables to random numbers from 0 to 10 when button A is pressed.
We now need to show this on the LEDs so the user can see the question.

on button pressed

set to pick random to0 10int2

set to pick random to0 10int1

A

show number int1

show number int2

pause (ms) 1000

pause (ms) 1000

pause (ms) 1000

show string "x"

show string "= ?"

Now we can add the show number blocks
to show the random numbers.

To make the program suitable for
younger learners we have added a pause

block so the number stays on the LEDs
long enough to read.

The show string “x” block represents the
multiplication symbol.

That last block is another show string

that displays the “=” sign and then a “?”
to show that it is a question.

14 Multiplication Revision App   Arm School Program

Test�time!
We have used a few different blocks here so now
is the time to test your program and make sure
that it behaves as you would expect.

Give your program a name such as math_app.hex�
and Download it onto you micro:bit.

Make sure to check that the answer is correct a few
times! If not, look at the blocks and see where the
problem is and fix it as you go along.

Stretch�tasks
 Make the program using the other math operators

(+, -, /); you could make the program change the operator when
shaken for example.

 Make another micro:bit keep score for two players (you will need to use the Radio blocks).

 Add a hard mode (questions between 0 and 100) when A+B are pressed.

Final�thoughts
In this micro:project we have covered:

 Inputs Basic math

 Variables Testing and troubleshooting

 Random numbers

and combined them to make a useful app. This is what Computing is all about, using the tools
to make something useful.

7
The�process�so�far:
 User is prompted to press button A for a question

We now need to display the answer as this is also required by the success criteria. We will now
program button B to give the answer. As we have stored the randomly generated numbers in
variables when button A is pressed we can now multiply them together and show this on the LEDs.

on button pressedB

show number int1 int2x

Again we use an on button pressed
block but this time for button B and
we also add the show number block.
Inside that block we use another
Math block to multiply int1 with int2.

15

1
Open https://makecode.microbit.org�

From the basic blocks add a forever block with a show

number block that contains the temperature input.

Save this as TemperatureSensor.hex and upload it to
your micro:bit. You will now see the temperature in
degrees centigrade shown continuously across the
LEDs. Try moving the micro:bit to warmer and cooler areas to see the changes on the screen (if you
have a battery, long enough USB cable or are using a laptop).

We will now use some simple logic to display a message based on the current temperature.

2
To start with the first task, we
need to add a forever block
to hold the other block so the
program will run continously.
We then need to add an if

block from the Logic blocks.

show number

forever

temperature (°C)

forever

if thentrue

16

micro:
project

Temperature Sensor   Arm School Program

Success�criteria
We are going to make a program that senses the
temperature and if

 the temperature is less than 18°C it will show the
message “Too cold!!”

 the temperature is between 18°C and 24°C it will
show the mesasge “Just right!”

 the temperature is more than 24°C it will show the
message “Too hot!”

Setting�the�scene
In this project, we will explore
some of the micro:bit’s other
sensors and use some new
blocks in MakeCode to create a
temperature sensor.

 TEMPERATURE
 SENSOR

https://makecode.microbit.org

3
This will test if something happens and then will do
something that we choose. We want to sense if the
temperature (in °C) is less than 18 so we now need a
compare block (also in the Logic block).

0 0<

4
We need to add this to the if block

forever

if then0 0<

5

We now need to add in the temperature input, the
desired temperature (18°C) and a message if the
temperature is less than 18°C. The if block is a logical
test and will return a True or False. It will only run the
blocks in the then section if the test is True.

forever

18

"Too cold!"

temperature (°C)

show string

if then<

≤

PRO TIP
Make�sure�you�know�what�
the�logic�operators�do:

=�EQUAL�to
≠�NOT�equal�to
<�LESS�than

≤�LESS�than�or�EQUAL�to
>�MORE�than

≥�MORE�than�or�EQUAL�to

17

6
The message “Too cold!” will only show if the temperature is less than 18°C.

That should now have met the first success criteria. The second success criteria will be slightly more
complex as it will need two tests to see if the temperature is above 18°C and below 24°C. To do this
we need to use another Logic block with an and in it to carry out two tests at the same time.

forever

if

show string

show string

then

if thentemperature (°C)

temperature (°C)

temperature (°C)

18

18 24and

"Mmm just right!"

"Too cold!"

<

> <

7
The final if block is very similar to the first block but with a >24
for the temperature input and “Too hot!” string. Duplicate the
first if block and change the values to speed things up.

forever

if

if

show string

show string

show string

then

then

if thentemperature (°C)

temperature (°C)

temperature (°C)

temperature (°C)

18

24

18 24and

"Mmm just right!"

"Too cold!"

"Too hot!"

<

> <

>

18 Temperature Sensor   Arm School Program

PRO TIP
You�can�right�click�on�any�
block�and�duplicate�them�

to�save�time!

Stretch�tasks
Here are some challenges that use the micro:bit’s inputs:

 Adjust the temperatures to what you think is too cold, just right and too hot.

 Make button A sense the temperature and button B sense the light intensity.

 Swap the show string for a custom icon.

 Use the on pin P0 pressed input to generate a random number between 0 and 99.

 Use the on button pressed blocks to test for magnetic force (you will need a magnet to
trigger this sensor) and use the result to give an output.

 Write down some real world examples of technology that uses if (selection) blocks,
logic and sensors to perform a task.

Final�thoughts
You have just learned how to:

 Use the micro:bits inputs in a program

 Use computational logic

 Use selection to test an input and return an output

Think about how this program could be extended. If it were too hot, what could we
get the program to do instead of just saying it’s too hot? What machine could the
program turn on?

Research what a solenoid is and how it could be used to turn on or off a machine using
a program.

19

1
Some�ideas
Here are some possible ideas that could be programmed for your pet:

 reacting to playing or shaking using an accelerometer;

 feeding every few second/minutes/hours;

 needing attention, such as getting lonely if not interacted with frequently and making noises to
remind you to interact;

 sleeping and waking, depending on a light sensor, and snoring when it is asleep;

 reacting to temperature using a temperature sensor;

 playing mini games, such as rock, paper, scissors;

 communicating and interacting with other pets using radio communication; and

 using other outputs such as sound to make your pet seem like it’s really alive (micro:bit V2 only).

2
Design
You can go one of two ways: use the net provided as the body of your pet, which you can adapt and
decorate, or design your own! If you design your own then you will need to complete the design sheet
to justify your design ideas.

20

micro:
project

Micro:pet V2   Arm School Program

Success�criteria
The�pet�must:�

 look like a friendly pet (be creative);

 be robust enough to be played with;

 contain a micro:bit that users can interact with;

 have a face to express emotions when interacted with;

 have one or more programmed interactions so it
behaves like a pet to keep the user company; and

 use the speaker and microphone to talk and react
to touch.

Setting�the�scene
Loneliness and isolation are
a real problem for children
staying in hospitals for long
periods, especially in rural
areas. You have been tasked
with creating a digital pet
that can be played with and
can keep people company
while they stay in hospital.

 MICRO:PET V2

You may also want to design your algorithms. You can do this however you
choose, or you could jump straight into MakeCode. When programming your
pet, always remember to consider the following.

 How is the user interacting with the pet?

 What are the inputs, processes and outputs?

 Test your pet continuously and adjust and improve it as you go along.

 Keep in mind the success criteria.

Here are some block snippets to help you get started or to help if you get stuck.
Try to complete the task without using these snippets if you can.

This is a BLANK net. It would make a minimalist pet on its own, but you
are meant to come up with a name and design for your pet. This will
give it character and make it seem more alive for the user.

The most important thing to remember is to be creative and come up with something novel that
meets the success criteria in an interesting way. Think about the needs of the user. Think about how
they will interact with the pet, what they would expect a pet to do, and how it would behave.

21

3
Smiley�face�for�the�micro:pet

The first success criterion is to make
the micro:pet friendly. You can do this
by giving it a smiley face. There are
some pre-made icons you could use,
or you could make your own. Here, the
show leds block is inside a forever block
so that the default state is happy.

4
Reacting�to�playing�or�shaking�(accelerometer)

A simple interaction to start with is the micro:pet
reacting to being shaken. Here, the micro:bit’s
accelerometer senses when it is being shaken using the
on shake block. It then shows a sad face to represent
the micro:pet being unhappy when it is shaken.

5
Reacting�to�playing�or�shaking�(accelerometer)�(V2)
If you have a micro:bit V2, then you can also add in some sound blocks to accompany
your interaction.

The V2 sounds are in the sound blocks. You also need to enable the speaker on start to make it work.
You only have to enable it once.

Think about how sounds can be added to all the interactions and what sounds best represent what
is happening. Here we use the baddy sound as the micro:pet is not happy. Experiment with the
sounds available to best suit the interaction.

PRO TIP
�Use�animation�to�make�your�
micro:pet�more�lifelike.�Think�
about�how�your�micro:pet�
would�react,�how�you�can�

animate�this,�and�what�sounds�
you�could�use.

show leds

forever

show icon show icon

forever on shake

show icon

forever

show icon

on shake

start melody baddy repeating once

on start

on-board speaker enable true

22 Micro:pet V2   Arm School Program

6
Emotions�that�are�affected�by�interaction
Next, add some other interactions, like the micro:pet being unhappy
when it is placed screen down. To do this, the input blocks use the
gyroscopic sensor to find out what orientation the micro:bit has.
The micro:bit can be programmed to give outputs such as a sad face.

Think about how a micro:pet would react to the available inputs.
Then think about how the reaction can be modeled using outputs such
as LEDs and sound.

7
Wakes�up�when�it�hears�a�loud�noise�(V2)
If you have a micro:bit V2, you can expand these interactions with sounds. Here, we use the
microphone on the micro:bit to sense loud noises. We give the micro:pet a surprised face and a
sound to represent being shocked by a loud noise.

forever

if

start melody

show icon

power down repeating once

then<light level 100

on loud

show icon

pause (ms)

show icon

repeating

sound

100

show icon

start melody power down repeating once

on-board speaker enable

start melody power down repeating once

on start

true

show icon

show icon

on

on

screen down

logo down

23

8
Feeding�(every�few�seconds�or�minutes)
All pets need regular feeding and the
micro:pet is no different. Here, we create a
variable called food and set it to 10 on start.
The food variable goes down by −1 every 2
seconds (you can make this as long as you
like). When it gets to 0, the pet gets hungry
and lets you know. You can feed the pet by
pressing the A button, which increments the
food variable by 1 on each press.

Think about how the feeding could be made
more interactive. Instead of pressing a
button, you could use another micro:bit as “food”. The radio blocks can be used to recognize when
the food is near the micro:pet.

9
Feeding�(every�few�seconds�or�minutes)�(V2)�
If you have a micro:bit V2 then you can enhance the feeding interaction with sounds for eating,
being hungry, and even being too full.

forever

if food then0 2000<

"Hungry"

if

show icon

show string

forever

on button pressedA

pause (ms)

-1change food by

1change food by

on start

10set food to

on button pressedA

1change food by

forever

if food then0<if

show icon

show icon

on start

start melody funeral repeating once

start melody power up repeating once

pause (ms) 5000

2000

forever

pause (ms)

-1change food by

10set food to

on-board speaker enable true

24 Micro:pet V2   Arm School Program

10
Needing�attention�(gets�lonely�if�not�interacted�with�frequently)
Another interaction to explore is the
micro:pet needing attention. This
would prompt the user to play with
the pet regularly, just like a real pet.
Here we use another variable called
timer. This goes down every second
and the micro:pet gets angry when
timer reaches 0. The timer variable
represents the attention given to the
micro:pet. You can give it attention
by pressing the B button or turning
the pet upright. Both of these actions
increase the timer variable by 10.

Getting the “neediness” right will take some experimentation. You don’t want the pet to be so needy
that it annoys the users.

11
Sleeping�and�waking�(light�sensor)
Here we also add in an if block to monitor light levels. If the light level is less than 100 out of 255,
then the micro:bit will show “Zzzzzz”. This represents the micro:pet going to sleep when it gets dark.

on

on button pressedB

logo up

10

10

change timer by

-1timer by

on start

10set timer to

timer bychange

if timer = then0if

show icon

change

forever

1000pause (ms)

forever

show icon

if thenlight level 100<

"Zzzzzz"show string

25

12
Reacting�to�temperature�(temperature�sensor)
Similarly, the micro:pet can be programmed to react to the ambient temperature.
Here, if the micro:pet gets cold, it shows a sad face.

13
Communication�and�interaction�between�micro:pets�(advanced)
If you have more than one micro:bit, you can create
two micro:pets and have them interact with each
other! This makes many more types of interaction
possible. Here, micro:pet 1 sends a “be happy” string
using the radio blocks. When micro:pet 2 receives the
string, it shows a happy face.

The radio blocks can be used to add some advanced
features. For example, you could add in games
between the micro:pets such as hide and seek,
and rock paper scissors, as well as adding in more
interactive feeding.

PRO TIP
Both�micro:bits�need�to�be�
on�the�same�radio�group�
to�be�able�to�communicate�

with�each�other.�

Micro:pet 1:

forever

if

else

thentemperature (°C) 18<

show icon

show icon

"be happy"radio send string

forever

1

on start

radio set group show icon

26 Micro:pet V2   Arm School Program

Micro:pet 2:

1

on start

radio set group show icon

forever

show icon

on radio received receivedString

Stretch�tasks
 Use other inputs, such as other types of sensors (this requires additional hardware).

 The medical team at the hospital have asked whether the pet could log any useful data.
Investigate what data could be logged to help them.

 Use servo motors to make your pet move.

 Use https://www.plushpal.app/ to create custom gestures for your pet.

Final�thoughts
This project introduces the concept and practice of rapidly prototyping a product to meet
a need. Mixing together problem solving, making, and computational thinking to make
creative and innovative projects is what makes physical computing fun. This project could
be taken all the way to a real-life product, and you should think about what other features
you could add to better suit the needs of the user. How could it be a better medical device?
How could it be better at entertaining a patient? How could it be improved? This idea of
iteratively improving products and projects is one we will explore further in other projects.

27

https://www.plushpal.app/

1
Getting�started
To begin, we will solve the second success criteria. We need to create a variable to store the
randomly generated S, P or R.

Open https://makecode.microbit.org�

Rock

beats�scissors

Scissors
beats�paper

Pa
pe
r

be
at
s�r
oc
k

S P

R

beats

be
at
s

beats

28

micro:
project

Rock Paper Scissors   Arm School Program

Success�criteria
 Make a game where S (Scissors) beats
P (Paper), P beats R (Rock) and R beats S

 The program will randomly select S, P or R
when shaken

 The program will transmit via radio the
selection and will determine if it has won or
lost the match

 The program will keep count of wins and
losses until reset by a button press (A and B)

Setting�the�scene
In this project we will explore a more
complicated game that involves some
logic to determine the winner. The
game is the classic rock paper scissors.

For this project, we will make a
program on two micro:bits so that
you can play rock paper scissors (also
known as Roshambo)

 ROCK PAPER
 SCISSORS

https://makecode.microbit.org

2
Random
We can’t get the micro:bit to make a random choice between S, P or R so we need to get it to
randomly generate a number (0, 1 and 2) which we can then use to represent the S, P and R.
We also can’t compare characters (chars) using logic so we must use number for this.

3
Here you can see we use an on shake block with a variable called player1_choice with a Math�block
to create the random number from 0 to 2, we will use 0 as S, 1 as P and 2 as R.

set to pick random toplayer1_choice

on shake

0 2

4
To create a variable you need to open the Variables menu in
MakeCode and select “Make a Variable” button

Variables

Make�a�Variable…

this will open a menu to name the variable:

New�variable�name:

CancelOk

5
We will now use some logic to tell the user (and the other
player’s micro:bit) what our choice was.

Two�players�are�better�than�one
For this game to be realistic we will need two players and
the code for each will be very similar. Think about how the
code for the second player will need to change.

29

PRO TIP
Name�your�variables�
wisely!�A�good�variable�
name�describes�what�
it�is�for�or�what�
it�contains.�

6
To work out who has won we need to create
three “tests” with three different outcomes:

 If the random number is 0 then the
micro:bit shows S and also broadcasts the
number 0

 If the random number is 1 then the
micro:bit shows P and also broadcasts the
number 1

 If the random number is 0 then the
micro:bit shows R and also broadcasts the
number 2

This gives us the basic game where the shake
produces either S, P or R. You could play the
game just with this program as you can work
out the winner yourself but we can make the
micro:bits work it out for us!

7
We need to ensure that the two micro:bits are talking to each other on the same channel. To do so
we need to set the radio group to the same number on both micro:bits.

radio set group

forever

1

So far we have met the following
success criteria:

 The program will randomly select S, P
or R when shaken

 The program will transmit the
selection via radio

0

1

2

0

1

2

0 2

"S"

"P"

"R"

show string

show string

show string

if

if

if

set to pick random to

on shake

player1_choice

player1_choice

player1_choice

then

then

then

radio send number

radio send number

radio send number

player1_choice

30 Rock Paper Scissors   Arm School Program

8
Keeping�score
We will now make the program keep score for each user and also allow the user to reset
the score to zero.

Here we create the initial user interface by telling the user to
“Shake to play”. Then we use the set score block (in the ‘Game’
blocks menu) to set the score to 0 when the program first runs
and also when A+B are pressed.

The�score�variable
‘Score’ is a built-in variable in the micro:bit used for
making games.

9
The�game�logic
Now for the slightly tricky bit! We have made the program transmit the choice but we now
need to make it receive the other player’s choice and determine whether we have won, lost,
or whether it’s a draw.

We are going to do some comparrisons of the variable player1_choice and receivedNumber.

We have just created the player1_choice variable and it will contain a number (0-2) if it has
been shaken. We now need to make the program listen for the other player’s choice and to
do this we need the on radio received block from the Radio blocks.

This block receives the radio signal from the other
micro:bit and stores the number in a variable called
receivedNumber

We can now compare the number transmitted from the other micro:bit (which represents their
randomly selected choice) and compare it to our number (randomly selected choice) to determine
who has won.

To do this we need an if�then�else block from the logic
blocks. Inside that block we will put an = logic block.
We are going to compare whether the receivedNumber
is the same as player1_choice and if it is then the game
is a draw.

show string

set score

on start

"Shake to play"

0

set score

on button A+B pressed

0

on radio received receivedNumber

on radio received receivedNumber

if

else

then00

31

10
We now need to add an = logic
block so we can see if the variable
is = to receivedNumber.

Here you can see the = block with
the variables inside them.

The then�part of the�if�then�else�
block shows the string “Draw!”
because if both players choose the
same the game is a draw.

Player 1 (player1_choice)

S – 0 P – 1 R – 2

Pl
ay

er
 2

(re

ce
iv

ed
N

um
be

r) S – 0 Draw Condition 1 Condition 2

P – 1 Condition 4 Draw Condition 3

R – 2 Condition 5 Condition 6 Draw

This leaves 6 remaining “conditions” that we need to test for.

Condition Player 1 (player1_choice) Player 2 (receivedNumber)

1 Lose Win

2 Win Lose

3 Lose Win

4 Win Lose

5 Lose Win

6 Win Lose

on radio received receivedNumber

if

else

then

"Draw!"

receivedNumber player1_choice

show string

32 Rock Paper Scissors   Arm School Program

11
Now we need to add some more logic to deal with these 6 conditions of the game. It does not
matter which order you check the conditions in, you just need to keep track of which ones you
have done with your code blocks. Another coder’s solution is likely to be different to yours but that
is fine, as long as all combinations are checked.

Add an else�if block to your blocks to test the next condition and then keep adding others until
you have dealt with all the squares in the table. The block show in the example below is for
player1_choice = R (2) and receivedNumber = S (0)

After each condition has been checked, we then need to adjust the score depending on who has
won. If the player has won, then their score can be increased by changing the built-in score variable
by 1, otherwise they lose. You need to make sure you test all the combinations which are shown
in the table above and test your program so that it always works out the correct winner and gives
them a point.

Check these blocks carefully. It is easy to miss a block or not change a number and this will make
the program behave strangely. The very last condition does not need to be checked because it is
the only possible combination left.

"Draw"show string

show string

"Lose"

"Lose"

show string "Win"

1change score by

show number score

show string "Win"

1change score by

show number score

show string "Win"

1change score by

show number score

"Lose"show string

show string

else

else

on radio received receivedNumber

thenplayer1_choice receivedNumber0 2and

thenplayer1_choice receivedNumber0 1and

thenplayer1_choice 2 1and

thenplayer1_choice 2 0and

thenplayer1_choice 1 0and

thenplayer1_choice receivedNumberif

if

else if

else if

else if

else if

receivedNumber

receivedNumber

receivedNumber

33

12
Two�player
Don’t forget that this is a two player game and so this program needs to be uploaded to two
micro:bits to play properly. You may want to change the player1_choice variable to player2_choice
on the second micro:bit but the program will work fine without this change.

The�full�solution

"Draw"show string

show string

"Lose"

"Lose"

show string "Win"

1change score by

show number score

show string "Win"

1change score by

show number score

show string "Win"

1change score by

show number score

"Lose"show string

show string

else

else

on radio received receivedNumber

thenplayer1_choice receivedNumber0 2and

thenplayer1_choice receivedNumber0 1and

thenplayer1_choice 2 1and

thenplayer1_choice 2 0and

thenplayer1_choice 1 0and

thenplayer1_choice receivedNumberif

if

else if

else if

else if

else if

receivedNumber

receivedNumber

receivedNumber

show string

set score

on start

"Shake to play"

0

set score

on button A+B pressed

0

0

1

2

0

1

2

0 2

"S"

"P"

"R"

show string

show string

show string

if

if

if

set to pick random to

on shake

player1_choice

player1_choice

player1_choice

then

then

then

radio send number

radio send number

radio send number

player1_choice

radio set group

forever

1

13
We have now met all the success criteria:

 Make a game where S (Scissors) beats P (Paper), P beats R (Rock) and R beats S

 The program will randomly select S, P or R when shaken

 The program will transmit the selection via radio and will determine if it has won or lost the match

 The program will keep count of wins and losses until reset by a button press (A and B)

34 Rock Paper Scissors   Arm School Program

Test�time!
We have used a few different blocks here
and lots of blocks within blocks, so now is
the time to test your program and make sure
that it behaves as you would expect. Make
sure to check that the game works correctly
a few times!

Stretch�tasks
 Change S, P, R to icons for scissors,

paper, rock.

 Make the program include three players.

 Add another option V (Vulcan) that beats
S but loses to P and R.

 Change the program so the player has
to press a button that starts a 3 second
countdown before the choice is made.

 Adapt the game to use functions to remove the nested if blocks.

Final�thoughts
This has been the most complicated program so far and has used some complicated logic.
Keep going! There are other ways to make this game and this is just one of them.

35

1
What�is�the�Internet�of�Things�(IoT)?
One way in which technology is improving our lives is by adding computers to everything.
These computers are tiny but contain sensors that allow the computer to control a system
or device. They can also transmit and receive data to and from the internet. This allows
much more precise control over the device as digital sensors are more precise that analogue
sensors in some applications such as temperature control.

In this project we will be designing and making a “smart” street light for a city. The city
currently has traditional street lights and these use a lot of electricity and have sodium bulbs
which are expensive to replace.

2
How�traditional�street�lights�work
Currently street lights work by either being manually controlled, turned on at a given time or
more modern ones have a light sensor that turns on the light when a light threshold is reached.

150

Pe
rc
en
ta
ge
�

sti
m
ul
i�d
et
ec
te
d

0

50

100

160 170 180
Light�intensity

190 200

This is very inefficient as the lights stay on constantly all night at the same brightness.

Threshold

micro:
project

36 Smart Cities   Arm School Program

Success�criteria
 Design a street light that changes
its behaviour depending on the
local conditions

 Design the body of the street light to
be efficient and robust

 Design the light housing to minimise
light pollution

 Create a program that uses the micro:bit’s
sensors to make the street light smart

 Create a smart street light that uses LEDs
to save electricity usage

 Consider how the data generated by smart
street lights could be used

 Suggest ways in which the data collected
from the sensors in the street lights
across the city could be used by other
organisations

 SMART CITIES

3
The city wants the new street lights to use sensors to detect the light levels and react to the
light levels with differing light intensities. They also want you to fully utilise the sensors on the
devices to provide as much data as possible that could be used by other departments in the
city. For example, the local weather station may use the temperature data to accurately predict
temperature.

4
Additional�considerations
 The street light should not exceed the footprint of a traditional street light

 The street lights can be connected to the internet if needed

 The environment agency is very keen for the lights to be as efficient as possible in terms of
both materials used and power consumed to minimise the environmental impact

 Consider what other sensors could be added to improve functionality

5
Getting�started
First we need to understand what sensors the micro:bit has that will be useful in our smart light.

We are going to also use two peripherals that add additional sensors to the ones built into the
micro:bit. We are going to use an enviro:bit and a scroll:bit.

6
Sensing�the�surroundings
First, we need to understand what inputs and outputs the micro:bit has and think about how best
to use them. We need to decide which inputs we want to use, how we will process that data and
the output we want to trigger.

micro:bit

Process

micro:bit�sensors
enviro:bit�sensors

Input

scroll:bit�(LED)

Output

37

Input Process Output

Sensors�built�into�the�micro:bit:

Temperature sensor

Light sensor

Accelerometer

Magnetometer

Trigger outputs based on

thresholds, timings etc

LED matrix

External�peripherals�(enviro:bit�and�scroll:bit)

Temperature sensor

Pressure sensor

Humidity sensor

Light and colour sensor

Microphone

Controlled by a micro:bit 17x7 white LEDs

Individual brightness control

Radio

Bluetooth

7
Enviro:bit
The enviro:bit is a micro:bit peripheral that adds in several additional environmental sensors that will
be useful for a smart street light.

8
Scroll:bit
The scroll:bit will form the lamp part of our smart street lamp. We will use a scroll:bit as it has white
LEDs and the intensity can be controlled to maximise efficiency.

9
Get�designing!
Now we need to design the system and the hardware for the new light. There are lots of inputs that
can be used here and you will need to think carefully about how to use the sensor data to achieve the
success criteria. You will also need to be mindful that you have two micro:bits in play and they may
need to talk to each other.

Use the design template on the following page to design your product.

38 Smart Cities   Arm School Program

Su
cc
es
s�c
rit
er
ia

D
es

ig
n

a
st

re
et

 li
gh

t t
ha

t c
ha

ng
es

 it
s

be
ha

vi
ou

r d
ep

en
di

ng
 o

n
th

e
lo

ca
l c

on
di

tio
ns

D
es

ig
n

th
e

bo
dy

 o
f t

he
 s

tr
ee

t l
ig

ht
 to

 b
e

effi
ci

en
t a

nd
 ro

bu
st

D
es

ig
n

th
e

lig
ht

 h
ou

sin
g

to
 m

in
im

ise
 li

gh
t p

ol
lu

tio
n

Cr
ea

te
 a

 p
ro

gr
am

 th
at

 u
se

s
th

e
m

ic
ro

:b
it’

s
se

ns
or

s
to

 m
ak

e
th

e
st

re
et

lig

ht
 s

m
ar

t

Cr
ea

te
 a

 s
m

ar
t s

tr
ee

t l
ig

ht
 th

at
 u

se
s

LE
D

s
to

 s
av

e
el

ec
tr

ic
ity

 u
sa

ge

Co
ns

id
er

 h
ow

 th
e

da
ta

 g
en

er
at

ed
 b

y
sm

ar
t s

tr
ee

t l
ig

ht
s

co
ul

d
be

 u
se

d

Su
gg

es
t w

ay
s

in
 w

hi
ch

 th
e

da
ta

 c
ol

le
ct

ed
 fr

om
 th

e
se

ns
or

s
in

 th
e

st
re

et

lig
ht

s
ac

ro
ss

 th
e

ci
ty

 c
ou

ld
 b

e
us

ed
 b

y
ot

he
r o

rg
an

isa
tio

ns

Ad
di
tio
na
l�c
on
si
de
ra
tio
ns

Th
e

st
re

et
 li

gh
t s

ho
ul

d
no

t e
xc

ee
d

th
e

fo
ot

pr
in

t o
f a

 tr
ad

iti
on

al
 s

tr
ee

t
lig

ht

Th
e

st
re

et
 li

gh
ts

 c
an

 b
e

co
nn

ec
te

d
to

 th
e

in
te

rn
et

 if
 n

ee
de

d

Th
e

en
vi

ro
nm

en
t a

ge
nc

y
is

ve
ry

 k
ee

n
fo

r t
he

 li
gh

ts
 to

 b
e

as
 e

ffi
ci

en
t a

s
po

ss
ib

le
 in

 te
rm

s o
f b

ot
h

m
at

er
ia

ls
us

ed
 a

nd
 p

ow
er

 c
on

su
m

ed
 to

 m
in

im
ise

th

e
en

vi
ro

nm
en

ta
l i

m
pa

ct

Co
ns

id
er

 w
ha

t o
th

er
 s

en
so

rs
 c

ou
ld

 b
e

ad
de

d
to

 im
pr

ov
e

fu
nc

tio
na

lit
y

M
at
er
ia
ls:

Es
se
nti
al
s�f
ea
tu
re
s:

N
ic
e�
to
�h
av
e:

In
pu
t�p
ro
ce
ss
�o
ut
pu
t:

H
ow
�is
�th
is
�d
es
ig
n�
be
tt
er
�th
an
�a
�tr
ad
iti
on
al
�li
gh
t?

W
ho
�d
oe
s�t
hi
s�n
ew
�d
es
ig
n�
he
lp
?

H
ow
�c
ou
ld
�it
�b
e�
be
tt
er
?

Sk
et
ch
�o
f �t
he
�li
gh
t:

Te
am
�n
am
e�
an
d�
br
an
di
ng
/l
og
o:

39

Stretch�tasks
Community�notice�board
The community want a notice board on the street light, where they can post about lost
pets, local events and community groups. People will create a notice at home, send it for
approval and then have it displayed.

 Design the system using a flow chart.

 Connect your micro:bit to a monitor to begin creating the noticeboard.

Dog�deterrent
Some owners allow their dogs to wee on lamp posts. The council would like to deter them.

 The sign needs to detect moisture from the dog and then frighten it so it does not want
to come back.

 Use the moisture sensor to detect the dog.

 Connect a speaker to create a noise.

 Find out about sounds that dogs can hear that humans cannot.

Police�interceptors
At the scene of an accident or incident, the police would like to turn up the street light.

 The police officer will be able to turn up the street light using a phone app.

 Find the micro:bit app on the app store.

 Pair the phone to the micro:bit using Bluetooth.

PRO TIP
Ensure�that�you�check�your�

success�criteria�regularly.�Think�
carefully�about�the�design�of�
the�light�housing�and�the�frame.�
It�will�need�to�be�robust�enough�
to�cope�with�high�winds�and�

harsh�weather.

40 Smart Cities   Arm School Program

Security�light
Local people have asked for a help button so that they feel safer walking at night.

 The help button will instantly set the light to maximum and an alarm will sound.

 A radio signal is sent to alert the control room.

 Use the A and B buttons to prompt different events.

 Can you think of other ways streetlights could help people feel safer at night?

Bin�day
Local people have asked for the streetlight to remind them when to put their bins out.

 The system needs to tell them which coloured bin or bins to put out.

 The normal bin day may change when there is a bank holiday.

 Find the website that has a bin calendar for your area.

 Create different coloured light to match the bin colours.

Freezing�conditions

The transport services need to know when the temperature has fallen below zero, so that
they can grit the streets and pavements.

 The system needs to detect when the temperature has fallen below zero.

 The street light can show a warning picture.

 Create a warning icon for the light to show.

 Use a fridge to test your final system.

Moon�tracker
The moonlight can cast shadows. The light could move with the moon so that it is always
illuminating the other side, so minimizing shadows.

 The moon rises in the east and sets in the west.

 Learn how to use the servo with the micro:bit to create a 180 degree turn.

 Use the compass sensor to set the direction.

Final�thoughts
One potential downside of the IoT revolution is the issue of e-waste. Adding electronics
to everything may produce additional waste that contains rare earth metals, unless we
consciously design technology to be more readily recyclable and not rely on unsustainable
materials. When designing our next project, consider how to minimise e-waste.

41

1
Breaking�down�the�problem
We are going to start by creating a program that uses the micro:bit’s sensors to allow
us to sense when a tree has been cut down. We will start with designing the program.

2
Input,�Process,�Output�(IPO)
We now need to think about the IPO of one of the required features for the product
to ‘alert authorities if the tree is cut down’. You can use this table to help you design a
solution for the other success criteria.

Input Process Output

Acceleration and tilt sensor
data to sense if tree is
falling over

If acceleration of angle of
sensor exceeds a threshold
then output

Send message to authorities
including location data

42 Tree Protector   Arm School Program

Success�criteria
 Can be attached to a
tree securely

 Alerts the authorities if:
– The tree is cut down

 Gives the authorities the
location of the fallen tree

Getting�started
A flourishing life on land is the foundation for our
life on this planet. We are all part of the planet’s
ecosystem and we have caused severe damage to it
through deforestation, loss of natural habitats and
land degradation. Promoting a sustainable use of our
ecosystems and preserving biodiversity is more than
just a cause. It is the key to our own survival.

We have been tasked with creating a product that
helps protect forests and combats deforestation. The
government wants a product that can be attached
to trees to alert the authorities if trees are being cut
down by illegal loggers.

 TREE PROTECTOR

Latitude

Lo
ng
itu
de

PRO TIP
The�authorities�will�need�GPS�co-ordinates�so�
that�they�can�intervene�if�there�is�illegal�logging�

occurring.�We�could�‘hard�code’�the�GPS�co-ordinate�
into�the�micro:bit�or�we�could�use�a�GPS�peripheral�

to�get�a�live�GPS�co-ordinate.�

The�format�of�a�GPS�co-ordinate�is�made�up�of�a�
latitude�and�a�longitude:

Latitude:�52.1818424
Longitude:�0.1789449

These�combined:�52.1818424,0.1789449

Can�you�work�out�where�this�
GPS�co-ordinate�is�for?

3
Example�code�for�the�node�(on�the�tree)

These blocks run as soon as the
micro:bit is powered on.

The first action is to set the ‘radio
group’ to 1, this also needs to be done
on the gateway so that the micro:bits
can talk to each other on the same
radio frequency. If these numbers are
different, it won’t work!

4
Next, 2 variables are created to store the GPS data. Latitude and longitude must be split. Why is
this? The micro:bit treats variables as numbers by default and the comma (,) confuses it and so it
strips out everything after and including the comma.

radio set group

on start

1

set to

show string

set toLatitude 52.1818424

set toLongitude

TreeFallMessage

0.1789449

"Tree has fallen"

set toGPS join Latitude

GPS

Longitude TreeFallMessage

43

on radio received receivedString

show string receivedString

5
We then create two more variables, one called ‘tree fall message’ with a message (drag a string box
from the Text menu to allow you to enter the value as a string) to transmit to the authorities and
another called GPS that ‘joins’ the latitude, longitude and the message. The ‘GPS’ variable is then
shown on the micro:bit’s screen to show it is working.

6
In this example, the micro:bit waits until it senses a
‘free fall’. This would happen if the tree was chopped
down and it fell (assuming the micro:bit is high
enough up the tree!). You will need to test this!

Next, we use a ‘while true’ loop, we use this so that
the blocks inside it will repeat forever, as True will
always be True.

The blocks inside the loop will transmit a string (text) which contains the message, latitude and
longitude (as a string). These can be received by the ‘gateway’ and then sent to the authorities who
can then come and see if the tree is being chopped down or if it has just fallen over naturally.

7
Example�code�for�the�gateway�(with�the�authorities)

This project is designed to be created on a
physical micro:bit: a node in one MakeCode
project and a gateway in another project.
(Second “on start” block is not needed in the
MakeCode simulator.) This first block again
runs as soon as the micro:bit is powered on.
The ‘radio group’ is set to the same group as
the node (this is important).

Next, we display a tick and some text to show
the program is active.

The next set of blocks waits to receive a string
via radio. It stores this string in a variable called
‘receivedString’ and then shows this string on
the LEDs.

This string will be the ‘GPS’ variable sent by the
node and contains the GPS co-ordinates of the
fallen tree.

while

do

true

on free fall

radio send string GPS

radio set group

show icon

show string

on start

1

"Scanning trees..."

44 Tree Protector   Arm School Program

Test�time!
The alert to the authorities will need to be tested
so that it doesn’t send alerts accidently, like if
the tree is just blowing in the wind for example.
You will need to test the sensitivity and set the
thresholds so that they only trigger an alert when
they are meant to.

Stretch�tasks
 Rather than manually adding the latitude and

longitude, adapt your product to be able to
get an accurate latitude and longitude from a
GPS device.

 Adapt your product so that it doesn’t just
rely on the micro:bit sensing freefall to
alert the authorities. What other sensors or
programming techniques could you use to
sense if a tree is being cut down?

 Sometimes trees blow over naturally in high winds. The authorities don’t want to
investigate every time this happens. They have decided to attach your product to lots of
trees in the forest but only want to be alerted if more than one tree collapses per day.
Can you combine other micro:bits to deliver this feature?

 Having devices in hard to reach places is a potential source of e-waste. One source of
e-waste is the use of batteries and these will be difficult to change on this project. How
can we power the tree protector without needing to change the batteries? Also, how can
we make sure the device itself doesn’t become e-waste?

Final�thoughts
We can protect life on land together. Here you can see what you can do to contribute.
Find organizations to support, information to share and some useful tips for your everyday
life that can really make a difference.

https://www.globalgoals.org/15-life-on-land

https://www.hackster.io/149085/panic-button-using-xinabox-micro-bit-and-ubidots-bf4dc8�

45

https://www.globalgoals.org/15-life-on-land
https://www.hackster.io/149085/panic-button-using-xinabox-micro-bit-and-ubidots-bf4dc8

1
To add the new blocks, click on “Advanced”
underneath the basic blocks menu to expand it.

2
At the bottom of the screen, click the “Extensions” button. This will
open a new search screen with all the available extensions. There
are lots! These extensions add additional functionality to your
micro:bit. Lots of them are for specific peripherals like the enviro:bit.

3
Type “datalogger” into the search
box and you should see the
new datalogger extension.
Notice that “datalogger”
has no spaces—you will get
many more results if you type
“data logger”.

PRO TIP
These�blocks�will�only�
work�with�the�new�
micro:bit�V2.

Math

Advanced

datalogger

datalogger
Data logging to flash memory.

micro:bit (V2) only.

46 Introduction to Data Logging   Arm School Program

Success�criteria
 Understand what datalogging is and what
it can be used for.

 Be able to add extensions to MakeCode.

 Create a simple data structure to contain
light level readings.

 Populate the data structure with light
level data.

 View and export the logged data.

Setting�the�scene
A new feature of the micro:bit V2 is its
ability to log data. This means that it can
take readings from its sensors and store
them in memory so that the data can be
accessed later. This allows you to use the
micro:bit to take all kinds of measurements
over time and then learn from the results.
This is also called “data science”.

 INTRODUCTION TO
 DATA LOGGING

Control

Extensions

4
You will now see the Data Logger blocks at the bottom of the
basic blocks menu.

5
These are all the blocks in the datalogger
extension. You now have all the extra blocks
you need, but let’s quickly look at what
datalogging is and how it works.

6
Datalogging is where you record data over a given amount of time. That data can be anything the
micro:bit can take as an input, for example, temperature or light levels. This data can be sampled
quickly or slowly. For example, if you wanted to log the Gs your scooter gets on a halfpipe then you
would sample a lot of data over a short time. If you were measuring light and moisture levels for a
plant in a greenhouse, you would sample
much more slowly for a longer period,
like every hour. This sampling rate is also
referred to as “automatic logging”.

You can already take inputs and process
them, but these blocks allow you to store
this data and then do something with it later
on. This is really useful if you want to analyze
data. You can even start to explore the
world of data science by applying statistical
techniques to analyze your data in clever
ways. This is advanced stuff, which we will
explore later, but let’s start with the basics.

Advanced

Math

Data Logger

Search...

Basic

Input

Music

Led

Radio

Functions

Loops

Arrrays

Logic

Text

Variables

Game

Math

Advanced

Data Logger

Data�Logger

microbit:(V2)

array oflog data column value" " 0 column value" " 0

column value" " 0

set columns

delete log

set timestamp

mirror data to serial

none

array of " "a " "b " "c

ON

on log full

Moisture
level

Samples

G�force

Time�(1�day)

Time�(30�seconds)

47

7
The data is stored in a file called MY_DATA, which you can access on the micro:bit from a PC.
You can export the data as a .csv file (for spreadsheets) or view the data by simply clicking on it.

8
The data you record will be stored in an array. This is a fancy word
for a table and you may already be familiar with it from using
spreadsheets. The array has rows and columns: rows go across from
left to right and columns go down from top to bottom.

9
An important concept to understand is the difference
between data and information. Data is raw facts and
figures, for example, letters and numbers. If this data is
shown in a useful format, for example, a graph, then it is
information. Information is data with context, or data that
has been processed into something with meaning.

Using our greenhouse example, the data on its own is meaningless, just a stream of readings.
However, when we know that the readings show how the light levels and moisture levels change
over time and how this affects the plants, we have information. Information is useful! Taking
that information and analyzing it is called data science. If we do this properly, we can turn our
information into knowledge, which we can use to improve what we are logging.

10
You need to label your data so you don’t just end up with lots of numbers with no meaning.
The label is the heading at the top of a column of readings.
The rows are filled in each time an input is sampled.

11
Let’s start with a simple example. Add a log data block from the Data Logger blocks to a forever
block. Name the column Light level and add a light level input block to the value space. This will
constantly log the light level and record it.

forever

log data array of column value light level"Light level"

A B C
1 time (source1) time (source1) data.0
2 0 0 2449.7
3 0.007 0.109 2449.85
4 0.007 0.213 2449.96
5 0.007 1.819 2451.5
6 0.007 3.678 2451.74
7 0.007 3.794 2453.52
8 0.008 3.901 2453.63
9 0.008 4.009 2453.74

10 0.008 4.125 2453.85

A B C
1 time (source1) time (source1) data.0
2 0 0 2449.7
3 0.007 0.109 2449.85
4 0.007 0.213 2449.96
5 0.007 1.819 2451.5
6 0.007 3.678 2451.74
7 0.007 3.794 2453.52
8 0.008 3.901 2453.63
9 0.008 4.009 2453.74

10 0.008 4.125 2453.85

48 Introduction to Data Logging   Arm School Program

V2

51

Show�console Simulator

Go back

159 0.00

233.193,128
233.214,128
233.246,128
233.267,128
233.288,128
233.309,128
233.33,128
233.351,128
233.377,128

247.00

Simulator

12
You will notice that this “Show console” button appears under the micro:bit simulator. If you click it,
you reach a new screen where you can see the live data being logged from the simulator.

Show�console Simulator

13

The graph shows the
data in real time.

The raw numeric
data is shown here.

You can change the light
level by dragging the
simulated light level circle
to see how the changes
affect the data.

You can also pause
the record, export the
data, or copy the text
using these buttons.

PRO TIP
Click�on�the�blocks�
at�the�top�of�the�

screen�to�get�back�to�
your�code.�

49

14
The micro:bit only has a limited amount of memory, so you need to
program a way to start and stop the logging. Use the buttons for this.

To do this, you need to create a variable. Click on the “Variables” icon,
choose “Make a variable”, and then name it something sensible like
“temperature” or “light_level”.

You can now use this variable to control when logging starts and stops
by testing whether it is true or false (on or off).

15
Start by setting the logging variable to false on start. This
means the micro:bit is not logging as soon as you start it up.

Next, use an on button A pressed block to set the variable to
true. You will use this to start the logging.

Next, use the on button B pressed block to set the logging
variable to false to stop the logging.

16
So far, you can’t see anything happening, so next add
some icons to the LEDs. These will show what state the
variable is in, either true (logging) or false (not logging).

You should also add in some sound blocks to give an
audio confirmation that the logging has started and
stopped. To do this, enable the built-in speaker.

Set up the column to store the data. The column will
hold the light level, with each row being a measurement
at a given time.

on start

on button

on button

pressed

pressed

A

B

set

set

set

Logging

Logging

to

to

to

true

falseLogging

false

Variables

Make�a�Variable…

Variables

on start

set to falseLogging

set built-in speaker

set columns

show icon

array of

ON

" "a

50 Introduction to Data Logging   Arm School Program

17
Next, add the blocks that start the datalogging when the logging variable is true.

Use an every x ms block so that a reading is taken every x milliseconds. Experiment with changing the
number of milliseconds and see how this affects your results. The more readings you take, the quicker
you will use up the available memory, but the more accurately you will monitor what is happening.

log data array of column value light level"Light level"

every ms100

LoggingIf then

18
Next, add sounds and icons to the on button blocks to provide audio feedback.

19
These blocks allow you to delete all the data by pressing
the micro:bit logo on the front of the micro:bit. You could
use an on button A+B block instead if you think this makes
it too easy to accidentally wipe your data.

You can also add the sad noise to indicate the data
being deleted.

play sound until done

delete log

on logo pressed

fast

sad

show icon

play sound until done

set

on button pressed

Logging

A

giggle

true

show icon

play sound until done

set to

on button pressed

Logging

B

happy

false

51

20
Now let’s add the blocks that allow the micro:bit to
keep recording even once the memory is full. These
blocks tell the micro:bit to overwrite the oldest data
with new data.

Add in an icon to show this is happening as well as a
suitable sound. You could even use a show string block
here to show that it is full.

21
Now see if it all works in the simulator. Click “Show console” to test the functionality.

You may need to click the A button on the simulator to see the button.

Show�console Simulator

22
Test that the buttons do as you expect, that the LEDs show the correct icon,
and that the right sounds play.

Adjust the light level to see the logs change.

V2

170

Show�console Simulator

Go back

data

160.774,170
160.795,170
160.817,170
160.838,170
160.859,170
160.88,170
160.901,170
160.928,170
160.949,170

fast

show icon

delete log

on log full

play sound twinkle

52 Introduction to Data Logging   Arm School Program

PRO TIP
Be�careful�not�

to�delete�your�data�
when�handling�
the�micro:bit!

23
Let’s now add a bar graph that shows the light level on the
micro:bit. This will show how much light you need to get a
reading. It’s more than you might think!

These blocks simply plot a bar chart on the LEDs to show
the light intensity the micro:bit is sensing. This uses the
same light sensor that you are using for datalogging so it
will help you to troubleshoot your program.

24
Now test your program on the real micro:bit!

Download the .hex file to your micro:bit. Using a torch or
other light source, check that the bar graph is registering
the changes in light on the LEDs. If it is, then go ahead
and press the A button to record the results.

After a short while, press the B button and then plug
your micro:bit back into your PC with the USB cable.

PRO TIP
You�can�sync�your�micro:bit�with�

MakeCode�using�WebUSB.�This�means�
you�can�just�click�“Download”�to�get�
your�code�on�your�micro:bit.�You�should�
get�a�prompt�in�MakeCode�that�will�
guide�you�through�the�process.�
https://microbit.org/get-started/

user-guide/web-usb/

forever

plot bar graph of

up to 255

light level

53

https://microbit.org/get-started/user-guide/web-usb/
https://microbit.org/get-started/user-guide/web-usb/

25
When you plug in the micro:bit, you should now be able
to see a new file called MY_DATA.

Open it and see what’s inside! PRO TIP
If�you�get�a�blank�page�when�you�
open�MY_DATA,�you�will�need�to�
update�your�micro:bit’s�firmware�
to�the�latest�version.�There�is�a�

guide�on�this�here:�
https://microbit.org/get-started/

user-guide/firmware/

26
This is what your MY_DATA file will look like. You have multiple options now: you can download
and save the data as a .csv file (for spreadsheets) or see a visual preview as a chart.

Now the data is gathered, you can analyze it either in a spreadsheet or using Python. See whether
any patterns emerge, and whether the data tells you anything interesting. We will get into this side
of things in a later project.

This PC

MICROBIT (D:)

Network

DETAILS

MICROBIT

MY_DATA

54 Introduction to Data Logging   Arm School Program

https://microbit.org/get-started/user-guide/firmware/
https://microbit.org/get-started/user-guide/firmware/

Stretch�tasks
 Modify the program to take in more than one type of reading. Other readings could

include temperature, direction, acceleration, or anything else that the micro:bit
can measure.

 Think of a project where measuring something over time would be useful. How could the
data help you?

 Download the data as a .csv file and then open it in a spreadsheet application. Create a
chart to visualize the data. Choose which chart to use carefully!

Final�thoughts
Being able to store data and analyze it later is a very powerful tool. The data you record
can help you improve what you are measuring. For example, a farm could measure soil
moisture and light levels, see how these affect the crop yield, and consequently improve
its profitability. Data can also be used to spot patterns, and you can create programs that
do this for you—this is known as machine learning. In our farm example, a form of machine
learning could be used in which the machine learns from the data which light and water
levels get the highest crop yield. This can be used to automate watering and light levels to
maximize the yield. Data science and machine learning can be applied to almost anything
and are rapidly changing the world we live in.

55

PRO TIP
The�scientists�want�data�from�
as�many�sensors�as�possible,�
if�you�can�use�other�sensor�
peripherals�make�sure�that�
you�make�full�use�of�all�the�

additional�sensors.�

1
Input,�Process,�Output�(IPO)�

Node

Input Process Output

Water temperature

Air temperature

Air pressure

Humidity

Air quality

Light intensity

Accelerometer (waves)

Compass

Format data

Unique ID
number

Transit data
via radio

Transmit
unique ID
number

Gateway

Input Process Output

Data via radio

Unique ID number via radio

Format the data Display the data on the LEDs

Ocean Health Monitor   Arm School Program56

micro:
project XXXXX

Success�criteria
 Design and create a floating sensor node
using a micro:bit

 The beacon must transmit sensor data to
a gateway micro:bit every 10 seconds

 The beacon must also transmit its unique
ID number (there will be lots of nodes!)

 The gateway micro:bit must be able to
show the data on its LED screen

Getting�started
A group of marine scientists have asked
you to develop a prototype floating
sensor node that they can leave in the
ocean. The will transmit data to them
so that they can study climate change in
the sea.

 OCEAN HEALTH
 MONITOR

2
Building�the�prototype
The prototype should be designed and made to float but
this does not need to be tested as the scientists are only
interested in the sensor data and not the floating part as
this will be made by a specialist boat designer.

In the following example the air temperature will be
sensed and transmitted from the node to the gateway.

3
Example�code�1�(node)
This example sets the radio group to 1, this is important as both
the node and the gateway need to be set to the same group or
they will not be able to communicate.

A variable is called ‘ID’ is created to store the node’s unique ID.

Another variable is created called ‘AirTemp’ and this is set to the
micro:bit temperature sensor reading.

Next, we create another variable
called ‘Data’ to hold the joined
(or concatenated) ID and
‘AirTemp’ variables.

The ‘Data’ variable is then sent
over radio.

4
Example�code�1�(gateway)

As with the node, we also need to set the radio group
to the same as the node or they will not be able to
communicate. (Second “on start” block is not needed in
the MakeCode simulator.)

Here, the micro:bit waits to
receive the variable ‘Data’.
It then shows the variable
on the LEDs.

PRO TIP
The�‘on�radio�received’�event�
can�only�be�created�once�due�
to�hardware�limitations,�to�

work�round�this�you�can�simply�
concatenate�(join)�your�sensor�
data�and�send�it�all�once,�or�use�
more�than�one�micro:bit.

on start

radio set group

set toID

1

12345

on radio received receivedString

show string Data

on start

radio send number 1

forever

set

set

radio send string

toData

AirTemp to temperature (°C)

Data

join AirTempID

57

5
Graphing�the�temperature�data
Example�code�2�(node)

In this example we again set the node radio group
to 1 and will also do the same on the gateway.

Again, we create a variable called ‘Air Temp’ and set
it to the micro:bit’s temperature sensor reading.

Then the ‘AirTemp’ variable is sent over radio to
the gateway.

6
Example�code�2�(gateway)

As with the node we also need to set the radio group
to the same as the node or they will not be able to
communicate. (Second “on start” block is not needed in
the MakeCode simulator.)

This is where things are a little different!

In this example we take the received variable and plot a
bar graph using the LED blocks.

You may need to think about adding some ‘pauses’ on
the node to slow the data transmission rate down to
make the batteries last longer!

PRO TIP
Sending�data�in�real�time�can�use�up�
batteries�on�these�devices�quickly�
and�these�monitors�need�to�be�at�sea�
for�long�periods�of�time.�Think�about�
how�you�can�send�the�data�from�the�
nodes�less�frequently�but�still�
give�a�good�representation�
of�temperature�changes�

over�time.

forever

set toAirTemp temperature (°C)

on start

radio set group 1

radio send number AirTemp

on radio received

plot bar graph of AirTemp

on start

radio send number 1

1023up to

receivedNumber

58 Ocean Health Monitor   Arm School Program

7
Graphing�the�acceleration�data
Example�code�3�(node)

These blocks are set up as in example 2
and set the radio group to 1 (this is also
done on the gateway below).

Here the acceleration data is sent over
radio. In the previous example we set a
variable to the temperature reading and
send that. Here the acceleration data is just
sent. Do you think this makes a difference?

In this example
the Y axis data is
sent. What is it
measuring?

8

9
Example�code�3�(gateway)

As before, the radio group is set to the same as
the node so that they can communicate. (Second
“on start” block is not needed in the MakeCode
simulator.)

The blocks here ‘listen’ for transmitted
numbers and then add them to a variable called
‘recievedNumber’.

A graph is then plotted on the LED screen showing
a real time graph of the accelerometer data.

Why might this be useful data for the scientists?

?

on start

forever

radio set group

radio send number

1

acceleration (mg) y

on radio received

plot bar graph of

receivedNumber

receivedNumber

on start

radio set group 1

2000up to

Z

X

Y

59

10
If you have access to any additional peripherals, you will need some custom extension
blocks in MakeCode. To find these blocks you need to click the ‘Extensions’ tab:

Extensions

search for the control board that you are using.

Test�time!

! �BEWARE! Micro:bits and peripherals are not waterproof! Electricity and water do not
mix well, and you can permanently damage the electronics by getting them wet. You can
test this prototype on dry land!

Stretch�tasks
 Add a separate temperature sensor that can be submerged to measure the temperature

at different depths.

 Using the compass on the micro:bit, modify your prototype to provide a wind direction to
the gateway. (You will need to do this on a separate micro:bit.)

 Create another node and have them both transmit different data to the gateway.

 Create a user interface (UI) for the gateway to allow the user to see the data from
separate nodes.

 Add a LoRa or WiFi transmitter to your prototype and transmit the data over longer
distances.

 Add a pH meter to also measure ocean acidity. (You may need to use an analogue to
digital signal converter.)

 Rather than transmitting the data, have the micro:bit log the data locally for the scientists
to collect. Alternatively, log and transmit the data for redundancy.

 Technology use is a contributor to global warming due to the amount of electricity that
it consumes. Research how technology companies like Arm are creating more efficient
technologies to help reduce our carbon footprint. How can we make sure our Ocean
Health Monitors don’t become e-waste?

Final�thoughts
This project explores several different computational techniques to gather useful data to
help the marine scientists. Can you think of other types of sensors that may help them?
What other data could be useful to them across an ocean?

Ocean Health Monitor   Arm School Program60

1
Input,�Process,�Output�(IPO)�

Light�(LED�grow�lights)

Input Process Output

Light level If light level drops
below 45

Turn on light

Water�(irrigation�pumps)

Input Process Output

Moisture
sensor

If moisture level
drops below <user
defined value>

Turn on
irrigation pumps

Building�the�prototype
To allow us to interact with irrigation pumps and grow
lights, we are going to need to use a relay. A relay is
a switch that can be controlled by a microcontroller.
We can program the micro:bit to switch the relay on
and off given certain conditions (such as light and
moisture levels) and the relay will switch on or off the
power to the pumps and lights automatically!

61

Success�criteria
 Design and build a prototype that uses
a light sensor to turn on a grow light
when the light level drops below a
certain level.

 The prototype should also use a
moisture sensor to turn on irrigation
pumps when the soil is dry.

 The prototype needs to have a ‘kill
switch’ to turn off the lights and pumps.

Getting�started
A group of farmers have some farmland that is
at risk of desertification (becoming unusable
for farming) and have asked you to develop a
prototype to control some LED grow lights and
irrigation pumps that will help grow plants on
the land. The lights and pumps can only be left
on or off and the farmers want a system where
the turning on and off is automated depending
on the wetness/dryness of the land and the light
levels to efficiently use water and electricity.

 AUTO-FARMER

2
PINS
Using the correct pins is important and the table below lists all the available pins on the micro:bit.

Pin Function�1 Function�2 Description
GND Ground�for�both�the�relay�and�the�

moisture�sensor
GND Ground
3V3 3.3V
0 Analog�In Connected�to�large�pin�0

Used�for�the�signal�from�the�moisture�sensor
1 Analog In Connected to large pin 1
2 Analog In Connected to large pin 2
3 Analog In LED Column 1 Controls part of LED array
4 Analog In LED Column 2 Controls part of LED array
5 Button A Connected to Button A on micro:bit
6 LED Column 9 Controls part of LED array
7 LED Column 8 Controls part of LED array
8 Open GPIO pin
9 LED Column 7 Controls part of LED array
10 Analog In LED Column 3 Controls part of LED array
11 Button B Connected to Button B on micro:bit
12 Open�GPIO�pin

Used�to�control�relay�1
13 SCK GPIO or SPI clock
14 MISO GPIO or SPI MISO
15 MOSI GPIO or SPI MOSI
16 Open�GPIO�pin

Used�to�control�relay�2
19 SCL GPIO or I2 clock
20 SDA GPIO or I2 data

3
We are going to use:

 Pin 0 for analogue input from the moisture sensor

 Pin 12 for the digital out to turn on relay 1 (IN1)

 Pin 16 for the digital out to turn on relay 2 (IN2)

 Pin 17 (3v) to power both the relay and the moisture sensor

 Ground (GND or 0v) for both the relay and the moisture sensor

62 Auto-farmer   Arm School Program

Wiring�it�all�up

4

In this image you can see how
the micro:bit breakout edge
connector is used to connect
the header cables to the relay
and the moisture sensor.

The cables to the moisture sensor had to
be doubled up as the connection on the
breakout board are male and the connection
on the moisture sensor are female. The
connection to the moisture sensor is held
in place with an elastic band. (This is not
ideal, but it works for a prototype and avoids
having to solder the connections or use
additional header connections.)

Here you can see the header
wires on the relay board. Notice
the cable colours and how they
match the pins above.

5

6

63

7

The picture below
shows it all wired
up together.

64 Auto-farmer   Arm School Program

8
Example�code

These blocks set the digital write to 1. This may
seem odd as usually 1 = on and 0 = off but the relay
being used is ‘active low’ which means it turns the
switch on with a 0 rather than a 1.

This just ensures the prototype starts ‘off’ when first
powered on.

9

These blocks add the ability to turn off the relay by
pressing the A button.

10
These blocks sense if the light level (using the light sensor on the
micro:bit) falls below 45, in which case it will turn on pin 12, which would
switch the relay switch on, which in turn would power the grow light.

The ‘else’ section ensures the
grow light would be set to off if
the light level is too high.

You will need to experiment
to see what the light level
threshold should be to turn
the light on so as not to waste
electricity during the day.

forever

if

else

digital write pin to

thenlight level 45

0

<

digital write pin to 1

P12

P12

on start

digital write pin P12

P16digital write pin

to

to

1

1

on button pressed

digital write pin P12

A

P16digital write pin

to

to

1

1

65

Test�time!
You will need to test the light and moisture
threshold values to make sure that they trigger
the relay when they are meant to. The light value
worked well under strip lights inside but may not
work in actual daylight so this will need to be tested!
The moisture values were tested in a cup of water
so you will need to test this using some dry soil and
some well-watered soil to get the right value. We
don’t want to waste any water or electricity.

Stretch�tasks
 Add in an LED and solenoid to create a fully

working prototype.

 Adapt your prototype to use other sensors to control other devices to help the farmers.

 Design a system to automate planting seeds.

 Log all of the data collected locally to allow the farmers to track what works best for
their crops.

Final�thoughts
This project has some real-world applications as efficient use of water and electricity is
important for sustainable farming. Using technology to make things more efficient is a great
way to make a difference and to help shape a sustainable future.

11
The analogue read pin gives a value
between 0 and 1023. The more electricity it
senses, the higher the value. If the soil were
wet, the water in the soil would conduct a
lot of electricity and so the value would be
very high. Dry soil would give a low value.

These blocks sense if the analogue read pin
value falls below 250 and then turns on pin
16 which would then turn on the irrigation
pumps to water the soil.

Pause blocks are needed here or you may
find the relay cycles on and off quickly.

forever

if

else

digital write pin

pause (ms)

to

thenanalog read pin 250

0

2000

<

P16

P0

digital write pin

pause (ms)

to 1

2000

P16

66 Auto-farmer   Arm School Program

1
Breaking�down�the�problem
The input and output for this problem are simple as the drone boat should start with a button press
and should follow a pre-programmed path. Creating the algorithm for the movement is the tricky
part and will require some thought.

Input,�Process,�Output�(IPO)

Input Process Output

Button press Algorithm to control the
movement of the boat drone
in a path to clean up oil:

Servo motor control

67

Success�criteria
 Build a floating oil spill
cleaner upper boat
drone that starts with
a button press.

 The product should be able
to autonomously navigate
over an area.

 The product should be
made to clean up an
oil spill by dragging a
‘smart material’.

Getting�started
Oil spills do untold damage to eco-systems.

A newly developed material can absorb up to 90 times its
own weight in spilled oil and then be squeezed out like a
sponge and reused, raising hopes for easier clean-up of oil
spill sites.

https://www.newscientist.com/article/2123391-sponge-
can-soak-up-and-release-spilled-oil-hundreds-of-times�

A group of marine scientists have asked you to develop an
algorithm that could be used on a boat drone to drag around
a sheet of this smart material to clean up an oil spill.

 OIL SPILL
 CLEANER UPPER

https://www.newscientist.com/article/2123391-sponge-can-soak-up-and-release-spilled-oil-hundreds-of-times
https://www.newscientist.com/article/2123391-sponge-can-soak-up-and-release-spilled-oil-hundreds-of-times

2
Building�the�product
For this project we need to build a simple boat. You can use anything that is waterproof.

Kit�required:

 A micro:bit

 Header wires

 Battery pack

 Boat building materials

 A foam sponge

 A mini screwdriver

 A servo driver board

There are many types of servo

controller boards for micro:bit,

in this example an ‘automation

bit’ was used.

PRO TIP
Don’t�worry�about�distances�at�
this�point.�Oil�spills�can�be�small�or�
large,�and�the�product�just�needs�
to�be�able�autonomously�clean�an�
area.�Think�about�how�the�size�of�

the�area�can�be�changed.
We�won’t�have�access�to�any�smart�
material�but�we�can�simulate�it�

using�a�normal�sponge.�

Smart material

Paddles

Servo

68 Oil Spill Cleaner Upper   Arm School Program

3

Here you can see how the servo motors are wired to the servo
controller and micro:bit.

The + cable from both the servos need to go into the 3v opening on
the servo control board.

The – cable needs to go into output 1 and 2 respectively.

Pay attention to which side you put them on. In this image:

Output 1 = Right

Output 2 = Left

You may have a third cable for the servo which is the ground (GND),
attach this to the GND terminal on the board if you have this.

Here you can see the two +
cables from the servos going
into the same 3v terminal.

Other servo control boards
may have more than one 3v
terminal and so these should
be separated if you can.

PRO TIP
There�are�several�extension�

boards�that�can�be�used�to�power�
motors�and�you�can�power�one�
directly�from�the�micro:bit’s�pins.�
If�you�cannot�find�this�extension�
board,�there�will�likely�be�several�
other�options�available�that�

do�the�same�thing.�

69

4
Example�code
In this example some custom extension blocks were used. To find these
blocks you need to click the ‘Extensions’ tab and then search for the control
board that you are using.

In this example an ‘automation bit’ was used, but other servo control boards will also work.

5
To start with we will create the first part of the algorithm that turns the servos on
when a button is pressed:

This simply sets each of the outputs to 1 (on) once
button A is pressed.

To get the servos to stay on for different amounts of time
we need to create a timer. In this example we use a ‘forever’
block to change the value of a variable by -1 every second. We
can then count down from any number we like by setting the
variable to however many seconds we need and then doing
something when it reaches 0.

In this example we set the button B to set the
outputs to 0 so that we can use it to turn of the
robot drone.

We could however use the A/B reset button to do
this, but we may need this button for something
else later.

Extensions

on button pressed

Set output One

A

TwoSet output

to

to

1

1

on button pressed

Set output One

B

TwoSet output

to

to

0

0

forever

pause (ms)

timerchange by

1000

-1

70 Oil Spill Cleaner Upper   Arm School Program

on button

do

A pressed

>while 0timer

set timer

>while

to 10

0timer

Set output

Set output

Two

One

1

1

set timer to 2

do
Set output One 1

Set output Two 0

to

to

to

to

forever

pause (ms)

timerchange by

1000

-1

on button pressed

Set output One

B

TwoSet output

to

to

0

0

In this example we use the button A as the trigger
to set the timer variable to 10.

We then use a while loop to check if the timer
variable is greater than 0, if it is, it turns both
outputs on. This would give us 10 seconds of
forward motion for the boat.

Once the timer variable reaches 0 we set the
timer variable to 2 (to give us 2 seconds) and
then use another while loop to check if the timer
variable is greater than 0. If it is, then it sets only
output 1 to 1 (on) so the drone boat will turn to
the right.

You will need to experiment with how many
seconds it takes to turn 90 degrees.

This set of blocks shows the first few steps
of the algorithm that automates the oil spill
clean-up.

You can use this as a starting point and adapt it
to meet the success criteria.

6

7

on button

do

A pressed

>while 0timer

set timer

>while

to 10

0timer

Set output

Set output

Two

One

1

1

set timer to 2

do
Set output One 1

Set output Two 0

to

to

to

to

71

Test�time!

! �BEWARE! Do not test this in water.

Micro:bits and peripherals are not waterproof!

Electricity and water do not mix well, and you

can permanently damage the electronics by

getting them wet.

Stretch�tasks
 Adapt the program so that the navigation is

done using the micro:bit’s compass so that it
turns precisely 90 degrees and can stay on
course more accurately.

 Add a moisture sensor so that the boat drone
only starts cleaning when in the water.

 In large oil spills, many drones would be used at
once. Adapt your programme so that the boat
drones don’t collide with each other. (You could use the radio blocks for this.)

 Adapt your program so that the ‘smart material’ is dragged by two drone boats and
the smart material is in a long thin sheet. This helps the oil to be squeezed out of it
more easily.

 Adapt your program so that the boat drones can return to a ‘base’ where the smart
material can be wrung out and then re-used.

 Adapt your program so that you can control the boat drones direction of travel remotely
using another micro:bit.

Final�thoughts
Combining smart material and autonomous drones is just one way that technology can help
protect the environment. Can you think of other ways that technology can help?

This project is all about cleaning up the environment. The technology we are using to do so
can easily become e-waste and add to the problem, unless we ensure it is sustainable and
designed to last. Think about how lots of technology is designed to fail after a short time so
you have to buy it again, how can we ensure our products don’t add to the problem?

72 Oil Spill Cleaner Upper   Arm School Program

1
A�treasure�clue�beacon
This will be a micro:bit that is hidden by your team and transmits a radio signal so that a ‘beacon
finder’ can find it. The beacon must also transmit a secret code (a single letter) when activated by a
passphrase that will be written/printed on a card next to the micro:bit in the hiding place.

Beacon
(hidden somewhere)

Beacon�finder
(with hunter)

Beacon�1 Beacon�finder

Listens for 1 Transmits 1

When receives 1 transmits
password letter

When receives password letter
shows on screen

73

Setting�the�scene
For this challenge there are three sub-challenges and so you
must work in teams. Each team must make:

 TREASURE HUNT

2
A�beacon�finder
This will be a micro:bit which is programmed to direct the user towards the clue
beacons and can be used to get the secret codes needed to unlock the treasure chest.

 The beacon finder will transmit the number of the
beacon. (This will be on the beacon.)

 The beacon will take this and transmit a letter of the
password for the treasure chest.

 Each beacon will transmit 1 letter.

 Each letter will make up the password.

 The password will be used by the key to open the chest.

Beacon�finder
(with hunter)

3
A�treasure�chest
The treasure chest must be a container which holds the
‘treasure’ and is unlocked when a secret code is transmitted
to it. The secret code will be made up of the individual codes
transmitted from the clue beacons.

4
A�chest�key
You will need to create a key (a micro:bit) that will transmit
the secret code to the treasure chest.

111

111

74 Treasure Hunt   Arm School Program

5

Beacon
codes can be

printed on
beacons!

Beacon�2

The password
in this example

is CATS

Group�ID Beacon�
code

Password�
letter

2 2 C

Group�ID Beacon�
code

1 1

2 2

3 3

4 4

PRO TIP
You�will�need�one�beacon�
per�letter�of�the�password.�
The�example�below�shows�
how�the�letters�of�the�

password�are�transmitted�
by�the�beacons.

Beacon�1

Group�ID Beacon�
code

Password�
letter

1 1 A

Beacon�4

Group�ID Beacon�
code

Password�
letter

4 4 T

Beacon�3

Group�ID Beacon�
code

Password�
letter

3 3 S

75

6
The�secret�password
Make the secret code a word with the same number of letters as
there are beacons so that the clues make up an anagram.

Success�criteria
Beacon Beacon�finder

 Each beacon must transmit a letter of the
password on group ID 128 with a transmit
power of 2 once it receives the correct
number on the appropriate group ID.

 The beacon must display its beacon number
constantly.

 Each beacon finder must transmit a number
on a group ID with the same number (128)
with a transmit power of 2.

 The beacon finder must help the user find
the beacon.

 The beacon finder must transmit the correct
number to the beacon.

 The beacon finder must store the password
letter as a variable.

Treasure�chest Key

 The treasure chest should listen to group ID
255 and open when it receives the correct
password made up of the password letters
transmitted by the beacons.

 The treasure chest should open using a
servo/motor.

 The chest should look like an authentic
treasure chest.

 The key must be able to receive the
complete password and then transmit it to
the chest on group ID 255 with a transmit
power of 2.

 The key must look like a key.

S RP DW AS O

P WA OS RS D

76 Treasure Hunt   Arm School Program

7
Some�ideas
Make the secret code a word with the same number of letters as the number of beacons so each
beacon transmits one letter that make up an anagram that is the secret word that opens the treasure
chest. If an anagram is too hard then the beacons can be numbered so the letters are already in the
right order.

8
Design
The most important thing to remember is to be creative and come up with something novel that
meets the success criteria in an interesting way. Think about the needs of the user and think about
how they will interact with the project and what they would expect the product to do.

Stretch�tasks
 Use a Caeser Cypher to encrypt the password.

 Create a digital ‘lock pick’ for the chest.

 Try to work out the password computationally using only some of the letters.

 Once opened, the chest should use light and sound to celebrate!

Equipment�needed
 A micro:bit for each letter of the password (~4 is ideal)

 1 x micro:bit for the beacon finder

 1 x micro:bit for the treasure chest

 1 x micro:bit for the key

 ~7�in�total

 Making resources for the key chest and beacons

– Card

– Paper

– Pens/pencils/colours

– Etc.

 A servo/motor for the chest

 Some treasure!

77

MicroPython allows you to use all the power of Python on the micro:bit.
Python is a high level text based language that is used commercially
across small, medium and global companies such as Google.

In this guide we will use Python code and it will look like this:

from microbit import *

display.scroll(“This is what code looks like”)

To write your code you will need to use an interpreter. You can use an
online one here:

https://python.microbit.org/v/1�

The interface looks like this:

Important�things�to�remember
Making the leap into using a “proper” programming language is exciting
but you need to be careful when typing out the code as any mistakes
will make MicroPython throw an error. MicroPython is case sensitive so
python and Python are treated as different things. Typing out the code
carefully is very important as any typos or missing quotation marks will
again throw errors. MicroPython usually tries to tell you what line the
error is on but it isn’t always completely accurate.

78

 XXXXX

Getting Started with MicroPython   Arm School Program

 GETTING STARTED
 WITH MICROPYTHON

https://python.microbit.org/v/1

 QUICKSTART
 MICROPYTHON
1

Let’s dive straight in (if you haven’t already) and code our first program. Open the interpreter
(https://python.microbit.org/v/1) and you should see the following code:

1 from microbit import *

2

3 while True:

4 display.scroll(‘Hello, World!’)

5 display.show(Image.HEART)

6 sleep(2000)

2
Let’s look at what each part does:

1 from microbit import * This imports everything MicroPython needs
to work with the micro:bit.
(* means "everything", which means all the
functionality within Python for working with
micro:bits)

2

3

4

5

6

7 while True: while True: means do whatever comes
after this (the indented bit) forever while
‘something’. The ‘something’ in this example
is True, and True will always be True so
it will run forever! You can add conditions
here like

while x > 5: but we’ll come to that later.

The next line display.scoll(‘Hello,
World!’) (as you have probably guessed)
displays and scrolls the message
‘Hello, World!’.

8

9

10

11

12

13

14

15 display.scroll(‘Hello, World!’)

16

17

18

micro:
project

79

https://python.microbit.org/v/1

19 display.show(Image.HEART) The next line is slightly different. It still
displays something, but this time it shows
it instead of scrolling it. Also, this time it is
displaying an image (Image.HEART) instead
of text, as previous.

20

21

22

23

24

25 sleep(2000) The sleep(2000) leaves a gap between the
loops of 2000 milliseconds (2 seconds). Then
the loop starts again.

26

27

Did you notice that after the display.scroll there were brackets () and speech marks ""
inside them? These are important as they tell MicroPython that what is between the bracket
and speech marks is text (or ‘string’ as it is also called in programming).

PRO TIP
When�typing�these,�open�and�close�
the�brackets�and�speech�marks�before�
adding�the�contents�so�that�you�don’t�
forget�to�close�them.�So�you�would�
type (‘’)�and�then�type�the��string�in�
the�middle.�You�can�use�‘�’�or�“�”�as�long�

as�you�are�consistent.
***Some�Python�interpreters�close�
them�for�you�automatically!***

3
Indentation
You may have noticed that all the lines after while True: are
indented four spaces. This is done to help the reader see what
code sits within other code, much like in MakeCode where
blocks sit inside each other.

1 while True:

2 display.scroll(‘Hello, World!’)

3 display.show(Image.HEART)

4 sleep(2000)

show icon

forever

pause (ms) 100

show string "Hello, World!"

80 Quickstart MicroPython   Arm School Program

4
Activity:
 Edit the code to scroll your name

 Edit the code to have a longer or shorter sleep

 Edit the code to show any other image from these built-in images:

Image.HEART

Image.HEART_
SMALL

Image.HAPPY

Image.SMILE

Image.SAD

Image.CONFUSED

Image.ANGRY

Image.ASLEEP

Image.
SURPRISED

Image.SILLY

Image.FABULOUS

Image.MEH

Image.YES

Image.NO

Image.TRIANGLE

Image.
CHESSBOARD

Image.DIAMOND

Image.DIAMOND_
SMALL

Image.SQUARE

Image.SQUARE_
SMALL

Image.RABBIT

Image.COW

Image.MUSIC_
CROTCHET

Image.MUSIC_
QUAVER

Image.MUSIC_
QUAVERS

Image.PITCHFORK

Image.XMAS

Image.PACMAN

Image.TARGET

Image.TSHIRT

Image.
ROLLERSKATE

Image.DUCK

Image.HOUSE

Image.TORTOISE

Image.BUTTERFLY

Image.
STICKFIGURE

Image.GHOST

Image.SWORD

Image.GIRAFFE

Image.SKULL

Image.UMBRELLA

Image.SNAKE

5
Make�your�own�image�
You can also create you own images and give them names to use later. To do this you need to tell
the micro:bit which LEDs you want to be on and which need to be off. Unlike in MakeCode we don’t
have a simulation to draw our image onto.

The micro:bit’s LEDs are arranged in a 5x5 grid so to make this easier we can arrange our code to
match. Below is the code needed to make your own images. Follow along and make sure you type
everything out carefully.

6
Plan�your�image
Plan your image using the MicroPython�design�sheet. Have a go at a few different designs and try
using the different brightness values from 0 – 9. Give your image a name underneath the grid as this
will help later on.

81

7
Programming�your�image
1

Here we are creating a variable called pattern1
and we are telling MicroPython that it is an image.
We need to specify 5 rows of 5 values (one for each
LED). The value can be from 0–9, 0 being off and 9
being the brightest. The code here won’t do anything
as there are no values, it is empty to show you the
structure of the code. We will add the values below.

2 pattern1 = Image(“:”

3 “:”

4 “:”

5 “:”

6 “”)

7

8

1 from microbit import *
We then need to tell it which LEDs we want on and off.

Having the code like this makes it easier to read for us
but you could have it all in one line like this:

pattern1 =

Image(“09090:90909:09090:90909:09090”)

Notice how there are fewer “” as all the code is on
one line.

2

3 pattern1 = Image(“09090:”

4 “90909:”

5 “09090:”

6 “90909:”

7 “09090”)

8

9 display.show(pattern1)

10

11

12

13

14

15

16

17

8
Variables
A variable is a container for a value, like a number we might use in a sum, or a string that we might use
as part of a sentence. One special thing about variables is that their contained values can change.

1 my_str = (“Hello”)
A variable can contain anything. Here we have variable
my_str which holds the string “Hello” and another
called my_int which holds an integer (number).
This would show 35 on the screen.

2 my_int = 35

3 display.show(my_int)

4

5

82 Quickstart MicroPython   Arm School Program

Stretch�tasks
 Try the above code yourself.

 Give the variable (pattern1) a different name.

 Make your own image with your own name.

 Experiment with different brightness values (0–9) to get different effects.

9
Getting�animated
Next we will create a series of images to make a simple animation and then display them to “play”
the animation on the micro:bit. Creating the images that make up the animation is the same as
making one but you do more of them!

1 from microbit import *
Here we have created 4 separate images with some
slight differences in the LED values to create an
animation. Just copy and paste your first image and
change the numbers to speed things up.

You may find it easier to plan your animation first
You could use a copy of the planning grids on page
74 or even use a spreadsheet.

2 pattern1 = Image(“09090:”

3 “90909:”

4 “09090:”

5 “90909:”

6 “09090”)

7 pattern2 = Image(“09090:”

8 “90509:”

9 “05050:”

After the images we create a list called all_
patterns and we add all the patterns (1–4)
to the list. You can tell it is a list as it uses
square brackets [].

Then we display the list with a slight delay.

10 “90509:”

11 “09090”)

12 pattern3 = Image(“05050:”

13 “50905:”

14 “09090:”

15 “50905:”

16 “05050”)

17 pattern4 = Image(“90909:”

18 “09090:”

19 “90909:”

20 “09090:”

21 “90909”)

22 all_patterns = [pattern1,
pattern2, pattern3, pattern4]

23
display.show(all_patterns,
delay = 200)

83

Stretch�tasks
 Create your own animation of at least 6 images in a list.

 Experiment with LED brightness values to create effects.

 Make your animation loop continuously.

Final�thoughts
So far we have programmed some outputs (LEDs). Next we will look at some
inputs (buttons) that can be used to trigger the outputs. This demonstrates the
Input, Process, Output model where an input, such as a button being pressed on
the micro:bit triggers a process, such as creating a variable with a value (like in the
multiplication revision app) that generates an output, such as scrolling the value
on the LEDs.

This process can describe many of the activities you will carry out on the
micro:bit and it will help you plan your own programs.

10
Lists
Lists are exactly what they sound like, they are lists of things. You can add anything to a
list and even mix them up.

1 while True:
Then we can display the list after casting
(changing it) it to a string data type.

2 if button_a.is_pressed():

3 display.scroll("A")

Did you notice that the numbers don’t require speech marks (“”)? Numbers don’t need
them as they represent a value. The “35” is a string and so maths can’t be performed with
it, but can be with 35. This is because a string and an integer are different data�types.

ProcessInput Output

84 Quickstart MicroPython   Arm School Program

show string "Q<- ->A"

on start

on button pressed

set to pick random to0 10int2

set to pick random to0 10int1

A

show number int1

show number int2

pause (ms) 1000

pause (ms) 1000

pause (ms) 1000

show string "x"

show string "= ?"

1

We are going to follow the same process as we did for the
MakeCode version at the start of the book, but this time
with MicroPython. To remind you of the program, the blocks
are on the left.

We are going to replicate this program in MicroPython code.

Before we dive in we must understand some other
programming tools:

 while loops – we have seen these before in the
Quickstart project

 if, else if, else – also known as selection

 buttons as inputs

 random numbers (functions and modules)

2
Buttons,�selection�and�loops
One of the simplest inputs on the micro:bit are the buttons. We have already used them
in some of our programs but we will now look at how to program them in MicroPython.
To get a button to work using code we need to use a while loop. A while loop is a test to
see if a condition is met, if it is then it runs the code that comes after it. We use a while
True: in the same way as the forever block in MakeCode.

on button pressedB

show number int1 int2x

85

 MULTIPLICATION
 REVISION APP 2.0

using�
MicroPython

1 from microbit import *

This code waits for button A to be pressed and
then scrolls A across the screen when it is.

2 while True:

3 if button_a.is_pressed():

4 display.scroll(“A”)

3
In this example we are testing whether True is true, which it always will be, so it then moves onto the
next line of code where we test if button A is pressed, and if it is we display ‘A’. You can test for any
condition such as while a button is pressed or while a variable equals a number for example.

4

if

PRO TIP
Notice�the�indentation?�This�

helps�us�see�the�structure�of�the�
code.�The�if is�triggered�by�
the�while�and�the�display.
scroll�is�trigerred�by�the�if.�
Indentation�is�usually�in�blocks�

of�four�spaces.�

So far we have our program waiting for button A to be pressed but if it isn’t then nothing happens.
We can fix this by adding in an else. An else can be understood like the word ‘otherwise’ as it is
triggered if the if condition is not met, so if button A is not pressed then the else code is triggered.

1 from microbit import *

This else: block will run if the if condition
is not met. It helps to keep a good user
experience for your program as otherwise the
screen would be blank.

2 while True:

3 if button_a.is_pressed():

4 display.scroll(“A”)

5 else:

6 display.show(Image.SNAKE)

86 Multiplication Revision App 2.0   Arm School Program

There is one more part of the if statement to explore and that is the elif which stands for else�if.
The elif is used when you want to test for more than one condition. We can use this to see if button
B is pressed. Rather than having a separate if statement we can add it to this one with an elif.

1 from microbit import *
These elif allow
us to test for more
than one condition
(a button being
pressed in this
example). You
can have more
than one elif if
you need to and
we have added
another to test
for both A and B
being pressed.

2

3 while True:

4 if button_a.is_pressed():

5 display.scroll(“A”)

6 elif button_b.is_pressed():

7 display.scroll(“B”)

8 elif button_a.is_pressed() and button_b.is_pressed():

9 display.scroll(“AB”)

10 else:

11 display.show(Image.SNAKE)

12

13

14

Random�numbers
We are now going to look at making a random number in MicroPython and then we have all the
pieces to make the Math revision app in MicroPython. In MicroPython there is a function�called
random.randint that creates a random integer (number). A function is like a mini program built
into MicroPython that does a specific job and random.randit creates random numbers. There are
lots of other functions that do lots of other things and using them makes programming much quicker
and easier. This function is part of a module called ‘random’ and we need to import it at the start of
our program.

1 from microbit import * This imports all the micro:bit modules
This imports the random module2 import random

3

87

To generate a random number we need to ‘call’ the function and give it some parameters, which
contain ‘arguments’. This tells MicroPython what range of numbers to use (0–9 for example).

1 from microbit import *
Here we have set up our forever
(while True) loop and have used
an if statement to see if button A is
pressed. If it is, we create a variable
called int1 (just like in MakeCode)
and then call the random.randint
function with the parameters (0,10)
which select a number between 0 and
10. We then do this again for int2.

2 import random

3

4 while True:

5 if button_a.is_pressed():

6 int1 = random.randint(0,10)

7 int2 = random.randint(0,10)

8

9

10

The�finished�program
1 from microbit import *

Here we have added some display.
scroll() to create the math
problem on the display and we have
added the initial prompt under the
else so users know what the buttons
do (Q = Question, A = Answer).

2 import random

3

4 while True:

5 if button_a.is_pressed():

6 int1 = random.randint(0,10)

7 int2 = random.randint(0,10)

8

9 display.scroll(int1)

10 display.scroll(“x”)

11 display.scroll(int2)

12 display.scroll(“= ?”)

13 elif button_b.is_pressed():

14 display.scroll(str(int1 * int2)

15 else:

16 display.show(“<-Q A->”)

17 display.clear()

88 Multiplication Revision App 2.0   Arm School Program

Test�it
Download the .hex file by clicking the Download button: and copying
it to the micro:bit.

Task
 Compare the MakeCode to the MicroPython

below to make sure you understand how they
are similar

 Draw lines from MicroPython code to the
corresponding MakeCode blocks

 Discuss how they are structurally different

1 from microbit import *

2 import random

3

4 while True:

5 if button_a.is_pressed():

6 int1 = random.randint(0,10)

7 int2 = random.randint(0,10)

8

9 display.scroll(int1)

10 display.scroll(“x”)

11 display.scroll(int2)

12 display.scroll(“= ?”)

13 elif button_b.is_pressed():

14 display.scroll(str(int1 * int2)

15 else:

16 display.show(“<-Q A->”)

17 display.clear()

Download

show string "Q<- A->"

on start on button pressedB

show number int1 int2xshow string "Q<- ->A"

on start

on button pressed

set to pick random to0 10int2

set to pick random to0 10int1

A

show number int1

show number int2

pause (ms) 1000

pause (ms) 1000

pause (ms) 1000

show string "x"

show string "= ?"

TEST

89

Final�thoughts
We have learned some of the fundamental building blocks of programming and used them to
make a math revision app in real code. We have learned about:

 Variables

 Selection (if, elif, else)

 While loops

 Functions and modules

Stretch�tasks
 Explore the micro:bit modules

(https://microbit-MicroPython.readthedocs.io/en/latest/microbit.html#functions�)
and think about how you could use these tools to solve a problem.

 Explore the other functions in the random library
(https://microbit-MicroPython.readthedocs.io/en/latest/random.html�).

 Explore other modules and built-in functions
(https://microbit-MicroPython.readthedocs.io/en/latest/microbit.html�)
such as:

– Speech

– SPI

– UART

– Accelerometer

90 Multiplication Revision App 2.0   Arm School Program

https://microbit-MicroPython.readthedocs.io/en/latest/random.html
https://microbit-MicroPython.readthedocs.io/en/latest/microbit.html

1
Arm

 School Program

91

 MICROPYTHON
 DESIGN SHEET
Use this sheet to design your images and animations. Fill the square with number from 0–9
with 0 being off and 9 being the brightest and give it a name.

0 9 0 9 0

0 9 0 9 0

0 0 0 0 0

9 0 0 0 9

0 9 9 9 0

smiley1

92 MicroPython Design Sheet   Arm School Program

 OTHER ASP PRODUCTS
The Arm School Program has a wealth of project based learning teaching resources, all freely
available at https://school.arm.com.

These include the following.

Arm�School�Program�on�YouTube
Visit our YouTube channel for a range of videos to support teaching and learning Computer Science
at home and in the classroom. You can also download tasks that encourage learners to apply the
skills and knowledge covered in our two playlists, Introduction to Computing with Micro:bit
https://www.youtube.com/watch?v=M4JdhPqmp7A&list=PLXwAdcOl0lCrDF-ympqZC94r59Xpb36GD
and Introduction to MicroPython
https://www.youtube.com/watch?v=XTSNznidJvU&list=PLXwAdcOl0lCpKRep_Gb_YVDfYjcaqZSvA .

Teaching�with�Physical�Computing�on�edX
Our program of four professional development courses on edX.org introduces teachers to
physical computing and how to apply it through project based learning (PBL) in order to maximize
engagement and learning in the classroom.

Whether you’re new to teaching Computing or you’re a specialist Computer Science teacher,
Teaching with Physical Computing will help you get to grips with PBL: the pedagogy and its practical
application. To access each course free of charge, after selecting ‘Enroll’ choose ‘Audit this course’.

https://www.edx.org/course/teaching-with-physical-computing-course-1-introduction-to-project-based-learning

Smart�Schools�on�Arduino
Our Smart Schools resource provides accessible and engaging projects for teachers and learners
that utilize the more advanced features of Arduino in real-world contexts. It presents real problems
that need solving with technology, with all the associated teaching and learning resources such as
slides, lesson plans, and activities, as well as solution guides and cheat sheets for non-specialists.

The resources are split into UK key stages 3–5 (6th–8th grade, 9th–10th grade and 11th–12th
grade respectively), with three courses per key stage.

https://www.arm.com/resources/education/schools/content/arduino-schools-projects�

Arduino�Projects�for�Schools
Arduino MKR Projects for Schools is a colorful entry-level resource, which introduces learners to
the exciting world of microcontrollers, the Internet of Things, and data science. Learners use both
simulators and physical devices to build systems and solve real-life problems.

https://www.arm.com/resources/education/schools/content/arduino-mkr-projects-for-schools�

93

https://school.arm.com
https://www.youtube.com/watch?v=M4JdhPqmp7A&list=PLXwAdcOl0lCrDF-ympqZC94r59Xpb36GD
https://www.youtube.com/watch?v=XTSNznidJvU&list=PLXwAdcOl0lCpKRep_Gb_YVDfYjcaqZSvA
https://www.edx.org/course/teaching-with-physical-computing-course-1-introduction-to-project-based-learning
https://www.arm.com/resources/education/schools/content/arduino-schools-projects
https://www.arm.com/resources/education/schools/content/arduino-mkr-projects-for-schools

Introduction�to�Computing�Using�micro:bit
Journey through all the features of the micro:bit with interactive activities and engaging projects
to excite and enthuse learners. The course uses MakeCode as the programming interface and is
suitable for learners of all ages and abilities.

https://www.arm.com/resources/education/schools/content/computing-using-microbit�

Robotics�and�Internet�of�Things�Course
Take a journey of learning through the Internet of Things and robotics. Learners apply Arm-based
technology to solve interesting and authentic problems, using micro:bits and other exciting
peripherals to create autonomous cars and smart cities.

https://www.arm.com/resources/education/schools/content/robotics-and-iot�

Introduction�to�Programming�Using�MicroPython
Learn about all the programming techniques contained in the UK Computer Science curriculum
for 11–16-year-olds using MicroPython to program a micro:bit. This programming course covers
the foundational computational techniques required for Computer Science for 14–16-year-olds
in the UK.

https://www.arm.com/resources/education/schools/content/programming-using-micropython�

Computational�Thinking�Tasks
These resources cover all the GCSE Computer Science computational thinking techniques for
14–16-year-olds. They contain lots of interactive activities to reinforce understanding and prepare
learners for their exams.

https://www.arm.com/resources/education/schools/content/computational-thinking�

International�Computing�Course�with�micro:bit
This is a complete curriculum designed for schools internationally, covering grades 5 through 7.
Each grade includes 40 hours of teaching and learning content and uses the Arm School Program’s
pedagogical approach of PBL. The course is based on the use of micro:bits and MicroPython.

https://www.arm.com/resources/education/schools/content/microbit-international�

94 Other ASP Products   Arm School Program

https://www.arm.com/resources/education/schools/content/computing-using-microbit
https://www.arm.com/resources/education/schools/content/robotics-and-iot
https://www.arm.com/resources/education/schools/content/programming-using-micropython
https://www.arm.com/resources/education/schools/content/computational-thinking
https://www.arm.com/resources/education/schools/content/microbit-international

